skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2229876

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The new wave of ‘foundation models’—general-purpose generative AI models, for production of text (e.g., ChatGPT) or images (e.g., MidJourney)—represent a dramatic advance in the state of the art for AI. But their use also introduces a range of new risks, which has prompted an ongoing conversation about possible regulatory mechanisms. Here we propose a specific principle that should be incorporated into legislation: that any organization developing a foundation model intended for public use must demonstrate a reliabledetection mechanismfor the content it generates, as a condition of its public release. The detection mechanism should be made publicly available in a tool that allows users to query, for an arbitrary item of content, whether the item was generated (wholly or partly) by the model. In this paper, we argue that this requirement is technically feasible and would play an important role in reducing certain risks from new AI models in many domains. We also outline a number of options for the tool’s design, and summarize a number of points where further input from policymakers and researchers would be required.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available December 10, 2025
  3. Free, publicly-accessible full text available September 16, 2025
  4. Internet of Things (IoT) cyber threats, exemplified by jackware and crypto mining, underscore the vulnerability of IoT devices. Due to the multi-step nature of many attacks, early detection is vital for a swift response and preventing malware propagation. However, accurately detecting early-stage attacks is challenging, as attackers employ stealthy, zero-day, or adversarial machine learning to evade detection. To enhance security, we propose ARIoTEDef, an Adversarially Robust IoT Early Defense system, which identifies early-stage infections and evolves autonomously. It models multi-stage attacks based on a cyber kill chain and maintains stage-specific detectors. When anomalies in the later action stage emerge, the system retroactively analyzes event logs using an attention-based sequence-to-sequence model to identify early infections. Then, the infection detector is updated with information about the identified infections. We have evaluated ARIoTEDef against multi-stage attacks, such as the Mirai botnet. Results show that the infection detector’s average F1 score increases from 0.31 to 0.87 after one evolution round. We have also conducted an extensive analysis of ARIoTEDef against adversarial evasion attacks. Our results show that ARIoTEDef is robust and benefits from multiple rounds of evolution.

     
    more » « less
    Free, publicly-accessible full text available August 31, 2025
  5. Free, publicly-accessible full text available August 14, 2025
  6. Free, publicly-accessible full text available August 14, 2025
  7. Free, publicly-accessible full text available August 14, 2025
  8. Free, publicly-accessible full text available August 14, 2025
  9. Free, publicly-accessible full text available August 14, 2025
  10. Free, publicly-accessible full text available August 14, 2025