Text watermarks for large language models (LLMs) have been commonly used to identify the origins of machine-generated content, which is promising for assessing liability when combating deepfake or harmful content. While existing watermarking techniques typically prioritize robustness against removal attacks, unfortunately, they are vulnerable to spoofing attacks: malicious actors can subtly alter the meanings of LLM-generated responses or even forge harmful content, potentially misattributing blame to the LLM developer. To overcome this, we introduce a bi-level signature scheme, Bileve, which embeds fine-grained signature bits for integrity checks (mitigating spoofing attacks) as well as a coarse-grained signal to trace text sources when the signature is invalid (enhancing detectability) via a novel rank-based sampling strategy. Compared to conventional watermark detectors that only output binary results, Bileve can differentiate 5 scenarios during detection, reliably tracing text provenance and regulating LLMs. The experiments conducted on OPT-1.3B and LLaMA-7B demonstrate the effectiveness of Bileve in defeating spoofing attacks with enhanced detectability.
more »
« less
RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content
Recent advancements in Large Language Models (LLMs) have showcased remarkable capabilities across various tasks in different domains. However, the emergence of biases and the potential for generating harmful content in LLMs, particularly under malicious inputs, pose significant challenges. Current mitigation strategies, while effective, are not resilient under adversarial attacks. This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently and effectively moderate harmful and unsafe inputs and outputs for LLMs. By employing a multi-faceted approach that includes energy-based training data augmentation through Langevin dynamics, optimizing a safe suffix for inputs via minimax optimization, and integrating a fusion-based model combining robust KNN with LLMs based on our data augmentation, RigorLLM offers a robust solution to harmful content moderation. Our experimental evaluations demonstrate that RigorLLM not only outperforms existing baselines like OpenAI API and Perspective API in detecting harmful content but also exhibits unparalleled resilience to jailbreaking attacks. The innovative use of constrained optimization and a fusion-based guardrail approach represents a significant step forward in developing more secure and reliable LLMs, setting a new standard for content moderation frameworks in the face of evolving digital threats.
more »
« less
- Award ID(s):
- 2229876
- PAR ID:
- 10575573
- Publisher / Repository:
- International Conference on Machine Learning (ICML 2024)
- Date Published:
- Format(s):
- Medium: X
- Location:
- Vienna, Austria
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modern web services rely heavily on REST APIs, typically documented using the OpenAPI specification. The widespread adoption of this standard has resulted in the development of many black-box testing tools that generate tests based on OpenAPI specifications. Although Large Language Models (LLMs) have shown promising test-generation abilities, their application to REST API testing remains mostly unexplored. We present LlamaRestTest, a novel approach that employs two custom LLMs-created by fine-tuning and quantizing the Llama3-8B model using mined datasets of REST API example values and inter-parameter dependencies-to generate realistic test inputs and uncover inter-parameter dependencies during the testing process by analyzing server responses. We evaluated LlamaRestTest on 12 real-world services (including popular services such as Spotify), comparing it against RESTGPT, a GPT-powered specification-enhancement tool, as well as several state-of-the-art REST API testing tools, including RESTler, MoRest, EvoMaster, and ARAT-RL. Our results demonstrate that fine-tuning enables smaller models to outperform much larger models in detecting actionable parameter-dependency rules and generating valid inputs for REST API testing. We also evaluated different tool configurations, ranging from the base Llama3-8B model to fine-tuned versions, and explored multiple quantization techniques, including 2-bit, 4-bit, and 8-bit integer formats. Our study shows that small language models can perform as well as, or better than, large language models in REST API testing, balancing effectiveness and efficiency. Furthermore, LlamaRestTest outperforms state-of-the-art REST API testing tools in code coverage achieved and internal server errors identified, even when those tools use RESTGPT-enhanced specifications. Finally, through an ablation study, we show that each component of LlamaRestTest contributes to its overall performance.more » « less
-
Safety aligned Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks (Qi et al., 2023)– a few harmful data mixed in the fine-tuning dataset can break the LLMs’s safety alignment. While several defenses have been proposed, our evaluation shows that existing defenses fail when some specific training hyper-parameters are chosen – a large learning rate or a large number of training epochs in the fine-tuning stage can easily invalidate the defense. To this end, we propose Antidote, a post-fine-tuning stage solution, which remains agnostic to the training hyper-parameters in the fine-tuning stage. Antidote relies on the philosophy that by removing the harmful parameters, the harmful model can be recovered from the harmful behaviors, regardless of how those harmful parameters are formed in the fine-tuning stage. With this philosophy, we introduce a one-shot pruning stage after harmful fine-tuning to remove the harmful weights that are responsible for the generation of harmful content. Despite its embarrassing simplicity, empirical results show that Antidote can reduce harmful score while maintaining accuracy on downstream tasks.more » « less
-
The dramatic surge of health misinformation on social media platforms poses a significant threat to public health, contributing to hesitancy in vaccines, delayed medical interventions, and the adoption of untested or harmful treatments. We present a novel, hybrid AI-driven framework designed for the real-time detection of health misinformation on social media platforms while prioritizing user privacy. The framework integrates the strengths of Large Language Models (LLMs), such as DistilBERT, with domain-specific Knowledge Graphs (KGs) to enhance the detection of nuanced and contextually dependent misinformation. LLMs excel at understanding the complexities of human language, while KGs provide a structured representation of medical knowledge, allowing factual verification and identification of inconsistencies. Furthermore, the framework incorporates robust privacy-preserving mechanisms, including differential privacy and secure data pipelines, to address user privacy concerns and comply with healthcare data protection regulations. Our experimental results on a dataset of Reddit posts related to chronic health conditions demonstrate the performance of this hybrid approach compared to models that only use text or KG, highlighting the synergistic effect of combining LLMs and KGs for improved misinformation detection.more » « less
-
As large language models (LLMs) become increasingly integrated into real-world applications such as code generation and chatbot assistance, extensive efforts have been made to align LLM behavior with human values, including safety. Jailbreak attacks, aiming to provoke unintended and unsafe behaviors from LLMs, remain a significant LLM safety threat. In this paper, we aim to defend LLMs against jailbreak attacks by introducing SafeDecoding, a safety-aware decoding strategy for LLMs to generate helpful and harmless responses to user queries. Our insight in developing SafeDecoding is based on the observation that, even though probabilities of tokens representing harmful contents outweigh those representing harmless responses, safety disclaimers still appear among the top tokens after sorting tokens by probability in descending order. This allows us to mitigate jailbreak attacks by identifying safety disclaimers and amplifying their token probabilities, while simultaneously attenuating the probabilities of token sequences that are aligned with the objectives of jailbreak attacks. We perform extensive experiments on five LLMs using six state-of-the-art jailbreak attacks and four benchmark datasets. Our results show that SafeDecoding significantly reduces attack success rate and harmfulness of jailbreak attacks without compromising the helpfulness of responses to benign user queries while outperforming six defense methods. Our code is publicly available at: https://github.com/uw-nsl/SafeDecodingmore » « less
An official website of the United States government

