Given a matrix D describing the pairwise dissimilarities of a data set, a common task is to embed the data points into Euclidean space. The classical multidimensional scaling (cMDS) algorithm is a widespread method to do this. However, theoretical analysis of the robustness of the algorithm and an in-depth analysis of its performance on non-Euclidean metrics is lacking. In this paper, we derive a formula, based on the eigenvalues of a matrix obtained from D, for the Frobenius norm of the difference between D and the metric Dcmds returned by cMDS. This error analysis leads us to the conclusion that when the derived matrix has a significant number of negative eigenvalues, then ∥D−Dcmds∥F, after initially decreasing, willeventually increase as we increase the dimension. Hence, counterintuitively, the quality of the embedding degrades as we increase the dimension. We empirically verify that the Frobenius norm increases as we increase the dimension for a variety of non-Euclidean metrics. We also show on several benchmark datasets that this degradation in the embedding results in the classification accuracy of both simple (e.g., 1-nearest neighbor) and complex (e.g., multi-layer neural nets) classifiers decreasing as we increase the embedding dimension.Finally, our analysis leads us to a new efficiently computable algorithm that returns a matrix Dl that is at least as close to the original distances as Dt (the Euclidean metric closest in ℓ2 distance). While Dl is not metric, when given as input to cMDS instead of D, it empirically results in solutions whose distance to D does not increase when we increase the dimension and the classification accuracy degrades less than the cMDS solution.
more »
« less
Neuc-MDS: Non-Euclidean Multidimensional Scaling Through Bilinear Forms
We introduce Non-Euclidean-MDS (Neuc-MDS), an extension of classical Multidimensional Scaling (MDS) that accommodates non-Euclidean and non-metric inputs. The main idea is to generalize the standard inner product to symmetric bilinear forms to utilize the negative eigenvalues of dissimilarity Gram matrices. Neuc-MDS efficiently optimizes the choice of (both positive and negative) eigenvalues of the dissimilarity Gram matrix to reduce STRESS, the sum of squared pairwise error. We provide an in-depth error analysis and proofs of the optimality in minimizing lower bounds of STRESS. We demonstrate Neuc-MDS’s ability to address limitations of classical MDS raised by prior research, and test it on various synthetic and real-world datasets in comparison with both linear and non-linear dimension reduction methods.
more »
« less
- Award ID(s):
- 2229876
- PAR ID:
- 10575584
- Publisher / Repository:
- The Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS)
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We undertake a precise study of the asymptotic and non-asymptotic properties of stochastic approximation procedures with Polyak-Ruppert averaging for solving a linear system $$\bar{A} \theta = \bar{b}$$. When the matrix $$\bar{A}$$ is Hurwitz, we prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity. The CLT characterizes the exact asymptotic covariance matrix, which is the sum of the classical Polyak-Ruppert covariance and a correction term that scales with the step size. Under assumptions on the tail of the noise distribution, we prove a non-asymptotic concentration inequality whose main term matches the covariance in CLT in any direction, up to universal constants. When the matrix $$\bar{A}$$ is not Hurwitz but only has non-negative real parts in its eigenvalues, we prove that the averaged LSA procedure actually achieves an $O(1/T)$ rate in mean-squared error. Our results provide a more refined understanding of linear stochastic approximation in both the asymptotic and non-asymptotic settings. We also show various applications of the main results, including the study of momentum-based stochastic gradient methods as well as temporal difference algorithms in reinforcement learning.more » « less
-
Clustering is a fundamental tool for exploratory data analysis. One central problem in clustering is deciding if the clusters discovered by clustering methods are reliable as opposed to being artifacts of natural sampling variation. Statistical significance of clustering (SigClust) is a recently developed cluster evaluation tool for high-dimension, low-sample size data. Despite its successful application to many scientific problems, there are cases where the original SigClust may not work well. Furthermore, for specific applications, researchers may not have access to the original data and only have the dissimilarity matrix. In this case, clustering is still a valuable exploratory tool, but the original SigClust is not applicable. To address these issues, we propose a new SigClust method using multidimensional scaling (MDS). The underlying idea behind MDS-based SigClust is that one can achieve low-dimensional representations of the original data via MDS using only the dissimilarity matrix and then apply SigClust on the low-dimensional MDS space. The proposed MDS-based SigClust can circumvent the challenge of parameter estimation of the original method in high-dimensional spaces while keeping the essential clustering structure in the MDS space. Both simulations and real data applications demonstrate that the proposed method works remarkably well for assessing the statistical significance of clustering. Supplementary materials for this article are available online.more » « less
-
Mahoney, Michael (Ed.)In this paper, we study the Radial Basis Function (RBF) approximation to differential operators on smooth tensor fields defined on closed Riemannian submanifolds of Euclidean space, identified by randomly sampled point cloud data. The formulation in this paper leverages a fundamental fact that the covariant derivative on a submanifold is the projection of the directional derivative in the ambient Euclidean space onto the tangent space of the submanifold. To differentiate a test function (or vector field) on the submanifold with respect to the Euclidean metric, the RBF interpolation is applied to extend the function (or vector field) in the ambient Euclidean space. When the manifolds are unknown, we develop an improved second-order local SVD technique for estimating local tangent spaces on the manifold. When the classical pointwise non-symmetric RBF formulation is used to solve Laplacian eigenvalue problems, we found that while accurate estimation of the leading spectra can be obtained with large enough data, such an approximation often produces irrelevant complex-valued spectra (or pollution) as the true spectra are real-valued and positive. To avoid such an issue, we introduce a symmetric RBF discrete approximation of the Laplacians induced by a weak formulation on appropriate Hilbert spaces. Unlike the non-symmetric approximation, this formulation guarantees non-negative real-valued spectra and the orthogonality of the eigenvectors. Theoretically, we establish the convergence of the eigenpairs of both the Laplace-Beltrami operator and Bochner Laplacian for the symmetric formulation in the limit of large data with convergence rates. Numerically, we provide supporting examples for approximations of the Laplace-Beltrami operator and various vector Laplacians, including the Bochner, Hodge, and Lichnerowicz Laplacians.more » « less
-
A communication-efficient protocol is introduced over a many-to-one quantum network for Q-E-B-MDS-X-TPIR, i.e., quantum private information retrieval with MDS-X-secure storage and T-private queries. The protocol is resilient to any set of up to E unresponsive servers (erased servers or stragglers) and any set of up to B Byzantine servers. The underlying coding scheme incorporates an enhanced version of a Cross Subspace Alignment (CSA) code, namely a Modified CSA (MCSA) code, into the framework of CSS codes. The error- correcting capabilities of CSS codes are leveraged to encode the dimensions that carry desired computation results from the MCSA code into the error space of the CSS code, while the undesired interference terms are aligned into the stabilized code space. The challenge is to do this efficiently while also correcting quantum erasures and Byzantine errors. The protocol achieves superdense coding gain over comparable classical baselines for Q-E-B-MDS-X-TPIR, recovers as special cases the state of art results for various other quantum PIR settings previously studied in the literature, and paves the way for applications in quantum coded distributed computation, where CSA code structures are important for communication efficiency, while security and resilience to stragglers and Byzantine servers are critical.more » « less
An official website of the United States government

