skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Accelerating Materials Discovery by High‐Throughput GIWAXS Characterization of Quasi‐2D Formamidinium Metal Halide Perovskites
Abstract The intriguing functionalities of emerging quasi‐2D metal halide perovskites (MHPs) have led to further exploration of this material class for sustainable and scalable optoelectronic applications. However, the chemical complexities in precursors—primarily determined by the 2D:3D compositional ratio—result in uncontrolled phase heterogeneities in these materials, which compromises the optoelectronic performances. Yet, this phenomenon remains poorly understood due to the massive quasi‐2D compositional space. To systematically explore the fundamental principles, herein, a high‐throughput automated synthesis‐characterization workflow is designed and implemented to formamidinium (FA)‐based quasi‐2D MHP system. It is revealed that the stable 3D‐like phases, where the α‐FAPbI3surface is passivated by 2D spacers, exclusively emerge at the compositional range (35–55% of FAPbI3), deviating from the stoichiometric considerations. A quantitative crystallographic study via high‐throughput grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) experiments integrated with automated peak analysis function quickly reveals that the 3D‐like phases are vertically aligned, facilitating vertical charge conduction that can be beneficial for optoelectronic applications. Together, this study uncovers the optimal 2D:3D compositional range for complex quasi‐2D MHP systems, realizing promising optoelectronic functionalities. The automated experimental workflow significantly accelerates materials discoveries and processing optimizations that are transferrable to other deposition methods, while providing fundamental insights into complex materials systems.  more » « less
Award ID(s):
2043205
PAR ID:
10575770
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
John Wiley & Sons, Inc
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
34
Issue:
49
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Quasi‐2D metal halide perovskites (MHPs) are an emerging material platform for sustainable functional optoelectronics, but the uncontrollable, broad phase distribution remains a critical challenge for applications. Nevertheless, the basic principles for controlling phases in quasi‐2D MHPs remain poorly understood, due to the rapid crystallization kinetics during the conventional thin‐film fabrication process. Herein, a high‐throughput automated synthesis‐characterization‐analysis workflow is implemented to accelerate material exploration in formamidinium (FA)‐based quasi‐2D MHP compositional space, revealing the early‐stage phase growth behaviors fundamentally determining the phase distributions. Upon comprehensive exploration with varying synthesis conditions including 2D:3D composition ratios, antisolvent injection rates, and temperatures in an automated synthesis‐characterization platform, it is observed that the prominentn= 2 2D phase restricts the growth kinetics of 3D‐like phases—α‐FAPbI3MHPs with spacer‐coordinated surface—across the MHP compositions. Thermal annealing is a critical step for proper phase growth, although it can lead to the emergence of unwanted local PbI2crystallites. Additionally, fundamental insights into the precursor chemistry associated with spacer‐solvent interaction determining the quasi‐2D MHP morphologies and microstructures are demonstrated. The high‐throughput study provides comprehensive insights into the fundamental principles in quasi‐2D MHP phase control, enabling new control of the functionalities in complex materials systems for sustainable device applications. 
    more » « less
  2. Abstract Cesium‐based quasi‐2D halide perovskites (HPs) offer promising functionalities and low‐temperature manufacturability, suited to stable tandem photovoltaics. However, the chemical interplays between the molecular spacers and the inorganic building blocks during crystallization cause substantial phase complexities in the resulting matrices. To successfully optimize and implement the quasi‐2D HP functionalities, a systematic understanding of spacer chemistry, along with the seamless navigation of the inherently discrete molecular space, is necessary. Herein, by utilizing high‐throughput automated experimentation, the phase complexities in the molecular space of quasi‐2D HPs are explored, thus identifying the chemical roles of the spacer cations on the synthesis and functionalities of the complex materials. Furthermore, a novel active machine learning algorithm leveraging a two‐stage decision‐making process, called gated Gaussian process Bayesian optimization is introduced, to navigate the discrete ternary chemical space defined with two distinctive spacer molecules. Through simultaneous optimization of photoluminescence intensity and stability that “tailors” the chemistry in the molecular space, a ternary‐compositional quasi‐2D HP film realizing excellent optoelectronic functionalities is demonstrated. This work not only provides a pathway for the rational and bespoke design of complex HP materials but also sets the stage for accelerated materials discovery in other multifunctional systems. 
    more » « less
  3. Abstract 2D perovskites are recently attracting a significant amount of attention, mainly due to their improved stability compared with their 3D counterpart, e.g., the archetypical MAPbI3. Interestingly, the first studies on 2D perovskites can be dated back to the 1980s. The most popular 2D perovskites have a general formula of (RNH3)2MAn−1MnX3n+1, wherenrepresents the number of metal halide octahedrons between the insulating organic cation layers. The optoelectronic properties of 2D perovskites, e.g., band gap, are highly dependent on the thickness of the inorganic layers (i.e., the value ofn). Herein, 2D perovskites are arbitrarily divided into three classes, strict 2D (n= 1), quasi‐2D (n= 2–5), and quasi‐3D (n> 5), and research progress is summarized following this classification. The majority of existing 2D perovskites only employ very simple organic cations (e.g., butyl ammonium or phenylethyl ammonium), which merely function as the supporting layer/insulating barrier to achieve the 2D structure. Thus, a particularly important research question is: can functional organic cations be designed for these 2D perovskites, where these functional organic cations would play an important role in dictating the optoelectronic properties of these organic–inorganic hybrid materials, leading to unique device performance or applications? 
    more » « less
  4. Abstract Solution‐processed metal halide perovskite (MHP) single crystals (SCs) are in high demand for a growing number of printed electronic applications due to their superior optoelectronic properties compared to polycrystalline thin films. There is an urgent need to make SC fabrication facile, scalable, and compatible with the printed electronic manufacturing infrastructure. Here, a universal cosolvent evaporation (CSE) strategy is presented by which perovskite SCs and arrays are produced directly on substrates via printing and coating methods within minutes at room temperature from drying droplets. The CSE strategy successfully guides the supersaturation via controlled drying of droplets to suppress all crystallization pathways but one, and is shown to produce SCs of a wide variety of 3D, 2D, and mixed‐cation/halide perovskites with consistency. This approach works with commonly used precursors and solvents, making it universal. Importantly, the SC consumes the precursor in the droplet, which enables the large‐scale fabrication of SC arrays with minimal residue. Direct on‐chip fabrication of 3D and 2D perovskite photodetector devices with outstanding performance is demonstrated. The approach shows that any MHP SC can now be manufactured on substrates using precision printing and scalable, high‐throughput coating methods. 
    more » « less
  5. In the last several years, laboratory automation and high‐throughput synthesis and characterization have come to the forefront of the research community. The large datasets require suitable machine learning techniques to analyze the data effectively and extract the properties of the system. Herein, the binary library of metal halide perovskite (MHP) microcrystals, MAxFA1−xPbI3−xBrx, is explored via low‐dimensional latent representations of composition‐ and time‐dependent photoluminescence (PL) spectra. The variational autoencoder (VAE) approach is used to discover the latent factors of variability in the system. The variability of the PL is predominantly controlled by compositional dependence of the bandgap. At the same time, secondary factor of variability includes the phase separation associated with the formation of the double peaks. To overcome the interpretability limitations of standard VAEs, the workflow based on the translationally invariant variational (tVAEs) and conditional autoencoders (cVAEs) is introduced. tVAE discovers known factors of variation within the data, for example, the (unknown) shift of the peak due to the bandgap variation. Conversely, cVAEs impose known factor of variation, in this case anticipated bandgap. Jointly, the tVAE and cVAE allow to disentangle the underlying mechanisms present within the data that bring a deeper meaning and understanding within MHP systems. 
    more » « less