Abstract During the 21st century, human–environment interactions will increasingly expose both systems to risks, but also yield opportunities for improvement as we gain insight into these complex, coupled systems. Human–environment interactions operate over multiple spatial and temporal scales, requiring large data volumes of multi‐resolution information for analysis. Climate change, land‐use change, urbanization, and wildfires, for example, can affect regions differently depending on ecological and socioeconomic structures. The relative scarcity of data on both humans and natural systems at the relevant extent can be prohibitive when pursuing inquiries into these complex relationships. We explore the value of multitemporal, high‐density, and high‐resolution LiDAR, imaging spectroscopy, and digital camera data from the National Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) for Socio‐Environmental Systems (SES) research. In addition to providing an overview of NEON AOP datasets and outlining specific applications for addressing SES questions, we highlight current challenges and provide recommendations for the SES research community to improve and expand its use of this platform for SES research. The coordinated, nationwide AOP remote sensing data, collected annually over the next 30 yr, offer exciting opportunities for cross‐site analyses and comparison, upscaling metrics derived from LiDAR and hyperspectral datasets across larger spatial extents, and addressing questions across diverse scales. Integrating AOP data with other SES datasets will allow researchers to investigate complex systems and provide urgently needed policy recommendations for socio‐environmental challenges. We urge the SES research community to further explore questions and theories in social and economic disciplines that might leverage NEON AOP data.
more »
« less
Edulyze: Learning Analytics for Real-World Classrooms at Scale
Classroom sensing systems can capture data on teacher-student behaviours and interactions at a scale far greater than human observers can. These data, translated to multi-modal analytics, can provide meaningful insights to educational stakeholders. However, complex data can be difficult to make sense of. In addition, analyses done on these data are often limited by the organization of the underlying sensing system, and translating sensing data into meaningful insights often requires custom analyses across different modalities. We present Edulyze, an analytics engine that processes complex, multi-modal sensing data and translates them into a unified schema that is agnostic to the underlying sensing system or classroom configuration. We evaluate Edulyze’s performance by integrating three sensing systems (Edusense, ClassGaze, and Moodoo) and then present data analyses of five case studies of relevant pedagogical research questions across these sensing systems. We demonstrate how Edulyze’s flexibility and customizability allow us to answer a broad range of research questions made possible by Edulyze’s translation of a breadth of raw sensing data from different sensing systems into relevant classroom analytics.
more »
« less
- Award ID(s):
- 2222530
- PAR ID:
- 10575824
- Publisher / Repository:
- Society of Learning Analytics Research
- Date Published:
- Journal Name:
- Journal of Learning Analytics
- Volume:
- 11
- Issue:
- 2
- ISSN:
- 1929-7750
- Page Range / eLocation ID:
- 297 to 313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Computational analysis methods and machine learning techniques introduce innovative ways to capture classroom interactions and display data on analytics dashboards. Automated classroom analytics employ advanced data analysis, providing educators with comprehensive insights into student participation, engagement, and behavioral trends within classroom settings. Through the provision of context-sensitive feedback, automated classroom analytics systems can be integrated into the evidence-based pedagogical decision-making and reflective practice processes of faculty members in higher education institutions. This paper presents TEACHActive, an automated classroom analytics system, by detailing its design and implementation. It outlines the processes of stakeholder engagement and mapping, elucidates the benefits and obstacles associated with a comprehensive classroom analytics system design, and concludes by discussing significant implications. These implications propose user-centric design approaches for higher education researchers and practitioners to consider.more » « less
-
de Vries, E; Hod, Y; Ahn, J (Ed.)Researchers in the Learning Sciences take two prevalent stances: research as building theories or as developing designs. The connection between theories and designs is most often filled in by methods, but an alternative stance is possible: research as improving models. The modeling stance seeks parsimonious, useful, illuminating descriptions of learning activity systems. Models can help us understand and express how variability (in all its forms) plays into, is enacted during, and results from designed learning activities. Building models often requires employing multiple theories, methods, and design elements; a modeling stance recognizes that our research often elaborates a multi-level systems view. An explicit modeling stance may lead to developing descriptions of complex systems, inviting multi-stakeholder teamwork to improve these systems, integrating advances in learning analytics and educational data mining, and adding to ability of learning sciences research to tackle challenges at scale.more » « less
-
Identifying hidden interactions within complex systems is key to unlocking deeper insights into their operational dynamics, including how their elements affect each other and contribute to the overall system behavior. For instance, in neuroscience, discovering neuron-to-neuron interactions is essential for understanding brain function; in ecology, recognizing interactions among populations is key to understanding complex ecosystems. Such systems, often modeled as dynamical systems, typically exhibit noisy high-dimensional and non-stationary temporal behavior that renders their identification challenging. Existing dynamical system identification methods typically yield operators that accurately capture short-term behavior but fail to predict long-term trends, suggesting an incomplete capture of the underlying process. Methods that consider extended forecasts (e.g., recurrent neural networks) lack explicit representations of element-wise interactions and require substantial training data, thereby failing to capture interpretable network operators. Here we introduce Lookahead-driven Inference of Networked Operators for Continuous Stability (LINOCS), a robust learning procedure for identifying hidden dynamical interactions in noisy time-series data. LINOCS integrates several multi-step predictions with adaptive weights during training to recover dynamical operators that can yield accurate long-term predictions. We demonstrate LINOCS’ ability to recover the ground truth dynamical operators underlying synthetic time-series data for multiple dynamical systems models (including linear, piece-wise linear, time-changing linear systems’ decomposition, and regularized linear time-varying systems) as well as its capability to produce meaningful operators with robust reconstructions through various real-world examplesmore » « less
-
Over the past decade, there has been a significant increase in the development of visual analytics systems dedicated to addressing urban issues. These systems distill intricate urban analysis workflows into intuitive, interactive visual representations and interfaces, enabling users to explore, understand, and derive insights from large and complex data, including street-level imagery, street networks, and building geometries. Developing urban visual analytics systems, however, is a challenging endeavor that requires considerable programming expertise and interaction between various multidisciplinary stakeholders. This situation often leads to monolithic and isolated prototypes that are hard to reproduce, combine, or extend. Concurrently, there has been an increase in the availability of general and urban-specific toolkits, frameworks, and authoring tools that are open source and abstract away the need to implement low-level visual analytics functionalities. This paper provides a hierarchical taxonomy of urban visual analytics systems to contextualize how they are usually designed, implemented, and evaluated. We develop this taxonomy across three distinct levels (i.e., dimensions, categories, and tags), juxtaposing visualization with analytics, data, and system dimensions. We then assess the extent to which current open-source toolkits, frameworks, and authoring tools can effectively support the development of components tailored to urban visual analytics, identifying their strengths and limitations in addressing the unique challenges posed by urban data. In doing so, we offer a roadmap that can guide the effective employment of existing resources and chart a pathway for developing and refining future systemsmore » « less
An official website of the United States government

