skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2222530

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Classroom sensing systems can capture data on teacher-student behaviours and interactions at a scale far greater than human observers can. These data, translated to multi-modal analytics, can provide meaningful insights to educational stakeholders. However, complex data can be difficult to make sense of. In addition, analyses done on these data are often limited by the organization of the underlying sensing system, and translating sensing data into meaningful insights often requires custom analyses across different modalities. We present Edulyze, an analytics engine that processes complex, multi-modal sensing data and translates them into a unified schema that is agnostic to the underlying sensing system or classroom configuration. We evaluate Edulyze’s performance by integrating three sensing systems (Edusense, ClassGaze, and Moodoo) and then present data analyses of five case studies of relevant pedagogical research questions across these sensing systems. We demonstrate how Edulyze’s flexibility and customizability allow us to answer a broad range of research questions made possible by Edulyze’s translation of a breadth of raw sensing data from different sensing systems into relevant classroom analytics.  
    more » « less
  2. Ambient classroom sensing systems offer a scalable and non-intrusive way to find connections between instructor actions and student behaviors, creating data that can improve teaching and learning. While these systems effectively provide aggregate data, getting reliable individual student-level information is difficult due to occlusion or movements. Individual data can help in understanding equitable student participation, but it requires identifiable data or individual instrumentation. We propose ClassID, a data attribution method for within a class session and across multiple sessions of a course without these constraints. For within-session, our approach assigns unique identifiers to 98% of students with 95% accuracy. It significantly reduces multiple ID assignments compared to the baseline approach (3 vs. 167) based on our testing on data from 15 classroom sessions. For across-session attributions, our approach, combined with student attendance, shows higher precision than the state-of-the-art approach (85% vs. 44%) on three courses. Finally, we present a set of four use cases to demonstrate how individual behavior attribution can enable a rich set of learning analytics, which is not possible with aggregate data alone. 
    more » « less
  3. Teaching is one of many professions for which personalized feedback and reflection can help improve dialogue and discussion between the professional and those they serve. However, professional development (PD) is often impersonal as human observation is labor-intensive. Data-driven PD tools in teaching are of growing interest, but open questions about how professionals engage with their data in practice remain. In this paper, we present ClassInSight, a tool that visualizes three levels of teachers’ discussion data and structures reflection. Through 22 reflection sessions and interviews with 5 high school science teachers, we found themes related to dissonance, contextualization, and sustainability in how teachers engaged with their data in the tool and in how their professional vision, the use of professional expertise to interpret events, shifted over time. We discuss guidelines for these conversational support tools to support personalized PD in professions beyond teaching where conversation and interaction are important. 
    more » « less