skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 27, 2026

Title: Underrepresentation of dietary‐specialist larval Lepidoptera in small forest fragments: Testing alternative mechanisms
Abstract Growing evidence suggests that organisms with narrow niche requirements are particularly disadvantaged in small habitat patches, typical of fragmented landscapes. However, the mechanisms behind this relationship remain unclear. Dietary specialists may be particularly constrained by the availability of their food resources as habitat area shrinks. For herbivorous insects, host plants may be filtered out of small habitat fragments by neutral sampling processes and deterministic plant community shifts due to altered microclimates, edge effects and browsing by ungulates.We examined the relationship between forest fragment area and the abundance of dietary‐specialist and dietary‐generalist larval Lepidoptera (caterpillars) and their host plants in the northeastern USA. We surveyed caterpillars and their host plants over 3 years in equal‐sized plots within 32 forest fragments varying in area between 3 and 1014 ha. We tested whether the abundances and species richness of dietary specialists increased more than those of dietary generalists with increasing fragment area and, if so, whether the difference could be explained by reduced host plant availability or increased browsing by white‐tailed deer (Odocoileus virginianus).The overall abundance of dietary specialists was positively related to fragment area; the relationship was substantially weaker for dietary generalists. There was notable variation among species within diet breadth groups, however. There was no effect of fragment area on the diversity of dietary‐specialist or dietary‐generalist caterpillars. Deer activity was not related to the abundances of either dietary‐generalist or dietary‐specialist caterpillars.Plant community composition was strongly associated with fragment area. Larger fragments were more likely to include host plants for both dietary‐specialist and dietary‐generalist caterpillars. Deer activity was correlated with decreased host plant availability for both groups, with a slightly stronger impact on host plants of dietary specialists. Although dietary specialists were more likely to lack host plants in fragments, the relationship between fragment area and host availability did not depend on caterpillar diet breadth.This study provides further evidence that decreasing patch area disproportionately impacts specialist consumers. Because this relationship was derived from equal‐sized plots, it is robust to some criticisms levelled at fragmentation research. The mechanisms for specialist consumer declines, however, remain elusive.  more » « less
Award ID(s):
1557086
PAR ID:
10576015
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
94
Issue:
4
ISSN:
0021-8790
Format(s):
Medium: X Size: p. 786-799
Size(s):
p. 786-799
Sponsoring Org:
National Science Foundation
More Like this
  1. Reduced ecological specialization is an emerging, general pattern of ecological networks in fragmented landscapes. In plant–herbivore interactions, reductions in dietary specialization of herbivore communities are consistently associated with fragmented landscapes, but the causes remain poorly understood. We propose several hypothetical bottom–up and top–down mechanisms that may reduce the specificity of plant–herbivore interactions. These include empirically plausible applications and extensions of theory based on reduced habitat patch size and isolation (considered jointly), and habitat edge effects. Bottom–up effects in small, isolated habitat patches may limit availability of suitable hostplants, a constraint that increases with dietary specialization. Poor hostplant quality due to inbreeding in such fragments may especially disadvantage dietary specialist herbivores even when their hostplants are present. Size and isolation of habitat patches may change patterns of predation of herbivores, but whether such putative changes are associated with herbivore dietary specialization should depend on the mobility, size, and diet breadth of predators. Bottom–up edge effects may favor dietary generalist herbivores, yet top–down edge effects may favor dietary specialists owing to reduced predation. An increasingly supported edge effect is trophic ricochets generated by large grazers/browsers, which remove key hostplant species of specialist herbivores. We present empirical evidence that greater deer browsing in small forest fragments disproportionately reduces specialist abundances in lepidopteran assemblages in northeastern USA. Despite indirect evidence for these mechanisms, they have received scant direct testing with experimental approaches at a landscape scale. Identifying their relative contribu 
    more » « less
  2. Abstract Theory predicts that trophic specialization (i.e. low dietary diversity) should make consumer populations sensitive to environmental disturbances. Yet diagnosing specialization is complicated both by the difficulty of precisely quantifying diet composition and by definitional ambiguity: what makes a diet ‘diverse’?We sought to characterize the relationship between taxonomic dietary diversity (TDD) and phylogenetic dietary diversity (PDD) in a species‐rich community of large mammalian herbivores in a semi‐arid East African savanna. We hypothesized that TDD and PDD would be positively correlated within and among species, because taxonomically diverse diets are likely to include plants from many lineages.By using DNA metabarcoding to analyse 1,281 faecal samples collected across multiple seasons, we compiled high‐resolution diet profiles for 25 sympatric large‐herbivore species. For each of these populations, we calculated TDD and PDD with reference to a DNA reference library for local plants.Contrary to our hypothesis, measures of TDD and PDD were either uncorrelated or negatively correlated with each other. Thus, these metrics reflect distinct dimensions of dietary specialization both within and among species. In general, grazers and ruminants exhibited greater TDD, but lower PDD, than did browsers and non‐ruminants. We found significant seasonal variation in TDD and/or PDD for all but four species (Grevy's zebra, buffalo, elephant, Grant's gazelle); however, the relationship between TDD and PDD was consistent across seasons for all but one of the 12 best‐sampled species (plains zebra).Our results show that taxonomic generalists can be phylogenetic specialists, and vice versa. These two dimensions of dietary diversity suggest contrasting implications for efforts to predict how consumers will respond to climate change and other environmental perturbations. For example, populations with low TDD may be sensitive to phylogenetically ‘random’ losses of food species, whereas populations with low PDD may be comparatively more sensitive to environmental changes that disadvantage entire plant lineages—and populations with low dietary diversity in both taxonomic and phylogenetic dimensions may be most vulnerable of all. 
    more » « less
  3. Abstract Species interactions are expected to change in myriad ways as the frequency and magnitude of extreme temperature events increase with anthropogenic climate change.The relationships between endosymbionts, parasites and their hosts are particularly sensitive to thermal stress, which can have cascading effects on other trophic levels.We investigate the interactive effects of heat stress and parasitism on a terrestrial tritrophic system consisting of two host plants (one common, high‐quality plant and one novel, low‐quality plant), a caterpillar herbivore and a specialist parasitoid wasp.We used a fully factorial experiment to determine the bottom‐up effects of the novel host plant on both the caterpillars' life history traits and the wasps' survival, and the top‐down effects of parasitism and heat shock on caterpillar developmental outcomes and herbivory levels.Host plant identity interacted with thermal stress to affect wasp success, with wasps performing better on the low‐quality host plant under constant temperatures but worse under heat‐shock conditions.Surprisingly, caterpillars consumed less leaf material from the low‐quality host plant to reach the same final mass across developmental outcomes.In parasitized caterpillars, heat shock reduced parasitoid survival and increased both caterpillar final mass and development time on both host plants.These findings highlight the importance of studying community‐level responses to climate change from a holistic and integrative perspective and provide insight into potential substantial interactions between thermal stress and diet quality in plant–insect systems. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. Abstract Understanding the often antagonistic plant–herbivore interactions and how host defenses can influence herbivore dietary breadth is an area of ongoing study in ecology and evolutionary biology. Typically, host plants/fungi that produce highly noxious chemical defenses are only fed on by specialists. We know very little about generalist species that can feed and develop on a noxious host. One such example of generalists feeding on toxic host occurs in the mushroom‐feedingDrosophilafound in theimmigrans‐tripunctataradiation. Although these species are classified as generalists, their acceptable hosts include deadlyAmanitaspecies. In this study, we used behavioral assays to assess associations between one mushroom‐feeding species,Drosophila guttifera, and the deadlyAmanita phalloides. We conducted feeding assays to confirm the presence of cyclopeptide toxin tolerance. We then completed host preference assays in female flies and larvae and did not find a preference for toxic mushrooms in either. Finally, we assessed the effect of competition on oviposition preference. We found that the presence of a competitor's eggs on the preferred host was associated with the flies increasing the number of eggs laid on the toxic mushrooms. Our results highlight how access to a low competition host resource may help to maintain associations between a generalist species and a highly toxic host. 
    more » « less
  5. Abstract Non‐crop habitats are essential for sustaining biodiversity of beneficial arthropods in agricultural landscapes, which can increase ecosystem services provision and crop yield. However, their effects on specific crop systems are less clear, such as soybean in South America, where the responses of pests and natural enemies to landscape structure have only recently been studied.Here, we analysed how native forest fragments at local and landscape scales influenced arthropod communities, herbivory and yield in soybean fields in central Argentina. To do this, we selected soybean fields located in agricultural landscapes with varying proportions of forest cover. At two distances (10 and 100 m) from a focal forest fragment, we sampled natural enemy and herbivore arthropods, and measured soybean herbivory and yield. We focused on herbivore diversity, abundance of key soybean pests in the region (caterpillars and stink bugs), and their generalist and specialist natural enemies.Higher abundance of predators, lower herbivory rates and increased yield were found near forests, while overall forest cover in the landscape was positively related with parasitoid and stink bug abundance, soybean yield, and negatively with herbivory. Moreover, yield was positively linked to richness and abundance of generalist and specialist enemies and independent of herbivory according to piecewise Structural Equation Models.Synthesis and applications. Our results show positive effects of native forests on biodiversity and yield in soybean crops, highlighting the need for conservation of forest fragments in agricultural landscapes. Moreover, the relation between natural enemies and crop yield suggests that Chaco forests support a diverse and abundant community of natural enemies that can provide sustained levels of ecosystem services and result in positive effects for farmers. 
    more » « less