Abstract Land-use change is highly dynamic globally and there is great uncertainty about the effects of land-use legacies on contemporary environmental performance. We used a chronosequence of urban grasslands (lawns) that were converted from agricultural and forested lands from 10 to over 130 years prior to determine if land-use legacy influences components of soil biodiversity and composition over time. We used historical aerial imagery to identify sites in Baltimore County, MD (USA) with agricultural versus forest land-use history. Soil samples were taken from these sites as well as from existing well-studied agricultural and forest sites used as historical references by the National Science Foundation Long-Term Ecological Research Baltimore Ecosystem Study program. We found that the microbiomes in lawns of agricultural origin were similar to those in agricultural reference sites, which suggests that the ecological parameters on lawns and reference agricultural systems are similar in how they influence soil microbial community dynamics. In contrast, lawns that were previously forest showed distinct shifts in soil bacterial composition upon recent conversion but reverted back in composition similar to forest soils as the lawns aged over decades. Soil fungal communities shifted after forested land was converted to lawns, but unlike bacterial communities, did not revert in composition over time. Our results show that components of bacterial biodiversity and composition are resistant to change in previously forested lawns despite urbanization processes. Therefore land-use legacy, depending on the prior use, is an important factor to consider when examining urban ecological homogenization.
more »
« less
Living on the edge: The sensitivity of arthropods to development and climate along an urban-wildland interface in the Sonoran Desert of central Arizona
Preservation of undeveloped land near urban areas is a common conservation practice. However, ecological processes may still be affected by adjacent anthropogenic activities. Ground-dwelling arthropods are a diverse group of organisms that are critical to ecological processes such as nutrient cycling, which are sensitive to anthropogenic activities. Here, we study arthropod dynamics in a preserve located in a heavily urbanized part of the Sonoran Desert, Arizona, U.S.. We compared arthropod biodiversity and community composition at ten locations, four paired sites representing the urban edge and one pair in the Preserve interior. In total, we captured and identified 25,477 arthropod individuals belonging to 287 lowest practical taxa (LPT) over eight years of sampling. This included 192 LPTs shared between interior and edge sites, with 44 LPTs occurring exclusively in interior sites and 48 LPTs occurring exclusively in edge sites. We found two site pairs had higher arthropod richness on the preserve interior, but results for evenness were mixed among site pairs. Compositionally, the interior and edge sites were more than 40% dissimilar, driven by species turnover. Importantly, we found that some differences were only apparent seasonally; for example edge sites had more fire ants than interior sites only during the summer. We also found that temperature and precipitation were strong predictors of arthropod composition. Our study highlights that climate can interact with urban edge effects on arthropod biodiversity.
more »
« less
- Award ID(s):
- 2224662
- PAR ID:
- 10576074
- Editor(s):
- Mansour, Ramzi
- Publisher / Repository:
- PLOS One
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 19
- Issue:
- 4
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0297227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Human impacts have led to dramatic biodiversity change which can be highly scale‐dependent across space and time. A primary means to manage these changes is via passive (here, the removal of disturbance) or active (management interventions) ecological restoration. The recovery of biodiversity, following the removal of disturbance, is often incomplete relative to some kind of reference target. The magnitude of recovery of ecological systems following disturbance depends on the landscape matrix and many contingent factors. Inferences about recovery after disturbance and biodiversity change depend on the temporal and spatial scales at which biodiversity is measured.We measured the recovery of biodiversity and species composition over 33 years in 17 temperate grasslands abandoned after agriculture at different points in time, collectively forming a chronosequence since abandonment from 1 to 80 years. We compare these abandoned sites with known agricultural land‐use histories to never‐disturbed sites as relative benchmarks. We specifically measured aspects of diversity at the local plot‐scale (α‐scale, 0.5 m2) and site‐scale (γ‐scale, 10 m2), as well as the within‐site heterogeneity (β‐diversity) and among‐site variation in species composition (turnover and nestedness).At our α‐scale, sites recovering after agricultural abandonment only had 70% of the plant species richness (and ~30% of the evenness), compared to never‐ploughed sites. Within‐site β‐diversity recovered following agricultural abandonment to around 90% after 80 years. This effect, however, was not enough to lead to recovery at our γ‐scale. Richness in recovering sites was ~65% of that in remnant never‐ploughed sites. The presence of species characteristic of the never‐disturbed sites increased in the recovering sites through time. Forb and legume cover declines in years since abandonment, relative to graminoid cover across sites.Synthesis.We found that, during the 80 years after agricultural abandonment, old fields did not recover to the level of biodiversity in remnant never‐ploughed sites at any scale. β‐diversity recovered more than α‐scale or γ‐scale. Plant species composition recovered, but not completely, over time, and some species groups increased their cover more than others. Patterns of ecological recovery in degraded ecosystems across space and long time‐scales can inform targeted active restoration interventions and perhaps, lead to better outcomes.more » « less
-
Desert ecosystems are one of the fastest urbanizing areas on the planet. This rapid shift has the potential to alter the abundances and species richness of herbivore and plant communities. Herbivores, for example, are expected to be more abundant within urban desert remnant parks located within cities due to anthropogenic activities that concentrate food resources and reduce native predator populations. Despite this assumption, previous research conducted around Phoenix, AZ, USA has shown that top-down herbivory led to equally reduced plant biomass in both urban and outlying locations. It is unclear if this insignificant difference in herbivory at urban and outlying sites is due to unaltered desert herbivore populations or altered activity levels that counteract abundance differences. Small rodent herbivore/granivore populations were surveyed at four sites inside and four sites outside of the core of Phoenix during fall 2014 and spring 2015 in order to determine whether abundances and richness differ significantly between urban and rural sites. In order to survey species composition and abundance at these sites, 100 Sherman traps and eight larger wire traps that are designed to attract and capture small vertebrates such as mice, rats, and squirrels were set at each site for two consecutive trap nights. Results suggest that the commonly assumed effect of urbanization on herbivore abundances does not apply to small rodent populations in a desert city, as overall small rodent abundances were statistically similar regardless of location. Though a significant difference was not found for species richness, a significant difference between small rodent genus richness at these sites was observed, with altered community composition. The compositional differences likely reflect the altered vegetative community and may impact ecological interactions at these sites.more » « less
-
Within estuarine and coastal ecosystems globally, extensive habitat degradation and loss threaten critical ecosystem functions and necessitate widescale restoration efforts. There is abundant evidence that ecological processes and species interactions can vary with habitat characteristics, which has important implications for the design and implementation of restoration efforts aimed at enhancing specific ecosystem functions and services. We conducted an experiment examining how habitat characteristics (presence; edge vs. interior) influence the communities of resident fish and mobile invertebrates on restored oyster (Crassostrea virginica) reefs. Similar to previous studies, we found that restored reefs altered community composition and augmented total abundance and biomass relative to unstructured sand habitat. Community composition and biomass also differed between the edge and interior of individual reefs as a result of species‐specific patterns over small spatial scales. These patterns were only weakly linked to oyster density, suggesting that other factors that vary between edge and interior (e.g. predator access or species interactions) are likely more important for community structure on oyster reefs. Fine‐scale information on resident species' use of oyster reefs will help facilitate restoration by allowing decision makers to optimize the amount of edge versus interior habitat. To improve the prediction of faunal use and benefits from habitat restoration, we recommend investigations into the mechanisms shaping edge and interior preferences on oyster reefs.more » « less
-
Human settlements and urbanisation are increasing globally, with more than half of the Earth's terrestrial surface being impacted by humans. This development has resulted in numerous anthropogenic stressors including nocturnal sensory pollution (i.e. light pollution), which is a key driver of insect declines. Nocturnality is hypothesized to reduce predation risk from visually-guided diurnal predators. More than half of all insect species, and 80% of Lepidoptera, are estimated to be nocturnal. Predation rates on insects are likely a result of habitat, time of day and the local predator composition. We investigated how predation rates on plasticine moth replicas differed between urban and rural sites, and between night and day. Visually matching paper-winged, clay-bodied replicas of the white-lined sphinx moth, Hyles lineata, were placed in a natural area within the city of El Paso, Texas, and in remote Chihuahuan Desert with minimal human disturbance. These replicas were checked during dawn and dusk for 3 days. Predation rates were significantly lower at night than during the day regardless of location, and predator composition differed between sites. Insectivorous birds were the primary diurnal predators in both locations, whereas nocturnal predators were represented primarily by insects at the rural site and by mammals at the urban site. These findings support the hypothesis that visually-guided predators, such as birds, exert higher predation pressures during the day, and supports the hypothesis that insect biodiversity, especially of predaceous insects, is affected by urbanisation.more » « less
An official website of the United States government

