Abstract Peat mosses (Sphagnumspp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits.Sphagnummosses harbor a diverse assemblage of microbial partners, including N2‐fixing (diazotrophic) and CH4‐oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen. Here, we investigate the response of theSphagnumphytobiome (plant + constituent microbiome + environment) to a gradient of experimental warming (+0°C to +9°C) and elevated CO2(+500 ppm) in an ombrotrophic peatland in northern Minnesota (USA). By tracking changes in carbon (CH4, CO2) and nitrogen (NH4‐N) cycling from the belowground environment up toSphagnumand its associated microbiome, we identified a series of cascading impacts to theSphagnumphytobiome triggered by warming and elevated CO2. Under ambient CO2, warming increased plant‐available NH4‐N in surface peat, excess N accumulated inSphagnumtissue, and N2fixation activity decreased. Elevated CO2offset the effects of warming, disrupting the accumulation of N in peat andSphagnumtissue. Methane concentrations in porewater increased with warming irrespective of CO2treatment, resulting in a ~10× rise in methanotrophic activity withinSphagnumfrom the +9°C enclosures. Warming's divergent impacts on diazotrophy and methanotrophy caused these processes to become decoupled at warmer temperatures, as evidenced by declining rates of methane‐induced N2fixation and significant losses of keystone microbial taxa. In addition to changes in theSphagnummicrobiome, we observed ~94% mortality ofSphagnumbetween the +0°C and +9°C treatments, possibly due to the interactive effects of warming on N‐availability and competition from vascular plant species. Collectively, these results highlight the vulnerability of theSphagnumphytobiome to rising temperatures and atmospheric CO2concentrations, with significant implications for carbon and nitrogen cycling in boreal peatlands. 
                        more » 
                        « less   
                    
                            
                            Temperature and CO2 interactively drive shifts in the compositional and functional structure of peatland protist communities
                        
                    
    
            Abstract Microbes affect the global carbon cycle that influences climate change and are in turn influenced by environmental change. Here, we use data from a long‐term whole‐ecosystem warming experiment at a boreal peatland to answer how temperature and CO2jointly influence communities of abundant, diverse, yet poorly understood, non‐fungi microbial Eukaryotes (protists). These microbes influence ecosystem function directly through photosynthesis and respiration, and indirectly, through predation on decomposers (bacteria and fungi). Using a combination of high‐throughput fluid imaging and 18S amplicon sequencing, we report large climate‐induced, community‐wide shifts in the community functional composition of these microbes (size, shape, and metabolism) that could alter overall function in peatlands. Importantly, we demonstrate a taxonomic convergence but a functional divergence in response to warming and elevated CO2with most environmental responses being contingent on organismal size: warming effects on functional composition are reversed by elevated CO2and amplified in larger microbes but not smaller ones. These findings show how the interactive effects of warming and rising CO2levels could alter the structure and function of peatland microbial food webs—a fragile ecosystem that stores upwards of 25% of all terrestrial carbon and is increasingly threatened by human exploitation. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10576224
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 30
- Issue:
- 3
- ISSN:
- 1354-1013
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Shifts in plant functional groups associated with climate change have the potential to influence peatland carbon storage by altering the amount and composition of organic matter available to aquatic microbial biofilms. The goal of this study was to evaluate the potential for plant subsidies to regulate ecosystem carbon flux (CO2) by governing the relative proportion of primary producers (microalgae) and heterotrophic decomposers (heterotrophic bacteria) during aquatic biofilm development in an Alaskan fen. We evaluated biofilm composition and CO2flux inside mesocosms with and without nutrients (both nitrogen and phosphorus), organic carbon (glucose), and leachates from common peatland plants (moss, sedge, shrub, horsetail). Experimental mesocosms were exposed to either natural sunlight or placed under a dark canopy to evaluate the response of decomposers to nutrients and carbon subsidies with and without algae, respectively. Algae were limited by inorganic nutrients and heterotrophic bacteria were limited by organic carbon. The quality of organic matter varied widely among plants and leachate nutrient content, more so than carbon quality, influenced biofilm composition. By alleviating nutrient limitation of algae, plant leachates shifted the biofilm community toward autotrophy in the light-transparent treatments, resulting in a significant reduction in CO2emissions compared to the control. Without the counterbalance from algal photosynthesis, a heterotrophic biofilm significantly enhanced CO2emissions in the presence of plant leachates in the dark. These results show that plants not only promote carbon uptake directly through photosynthesis, but also indirectly through a surrogate, the phototrophic microbes.more » « less
- 
            ABSTRACT To better understand linkages between hydrology and ecosystem carbon flux in northern aquatic ecosystems, we evaluated the relationship between plant communities, biofilm development, and carbon dioxide (CO2) exchange following long‐term changes in hydrology in an Alaskan fen. We quantified seasonal variation in biofilm composition and CO2exchange in response to lowered and raised water table position (relative to a control) during years with varying levels of background dissolved organic carbon (DOC). We then used nutrient‐diffusing substrates (NDS) to evaluate cause–effect relationships between changes in plant subsidies (i.e., leachates) and biofilm composition among water table treatments. We found that background DOC concentration determined whether plant subsidies promoted net autotrophy or heterotrophy on NDS. In conditions where background DOC was ≤ 40 mg L−1, plant subsidies promoted an autotrophic biofilm. Conversely, when background DOC concentration was ≥ 50 mg L−1, plant subsidies promoted heterotrophy. Greater light attenuation associated with elevated levels of DOC may have overwhelmed the stimulatory effect of nutrients on autotrophic microbes by constraining photosynthesis while simultaneously allowing heterotrophs to outcompete autotrophs for available nutrients. At the ecosystem level, conditions that favored an autotrophic biofilm resulted in net CO2uptake among all water table treatments, whereas the site was a net source of CO2to the atmosphere in conditions that supported greater heterotrophy. Taken together, these findings show that hydrologic history interacts with changes in dominant plant functional groups to alter biofilm composition, which has consequences for ecosystem CO2exchange.more » « less
- 
            Abstract Widespread changes in arctic and boreal Normalized Difference Vegetation Index (NDVI) values captured by satellite platforms indicate that northern ecosystems are experiencing rapid ecological change in response to climate warming. Increasing temperatures and altered hydrology are driving shifts in ecosystem biophysical properties that, observed by satellites, manifest as long‐term changes in regionalNDVI. In an effort to examine the underlying ecological drivers of these changes, we used field‐scale remote sensing ofNDVIto track peatland vegetation in experiments that manipulated hydrology, temperature, and carbon dioxide (CO2) levels. In addition toNDVI, we measured percent cover by species and leaf area index (LAI). We monitored two peatland types broadly representative of the boreal region. One site was a rich fen located near Fairbanks, Alaska, at the Alaska Peatland Experiment (APEX), and the second site was a nutrient‐poor bog located in Northern Minnesota within the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found thatNDVIdecreased with long‐term reductions in soil moisture at theAPEXsite, coincident with a decrease in photosynthetic leaf area and the relative abundance of sedges. We observed increasingNDVIwith elevated temperature at theSPRUCEsite, associated with an increase in the relative abundance of shrubs and a decrease in forb cover. Warming treatments at theSPRUCEsite also led to increases in theLAIof the shrub layer. We found no strong effects of elevatedCO2on community composition. Our findings support recent studies suggesting that changes inNDVIobserved from satellite platforms may be the result of changes in community composition and ecosystem structure in response to climate warming.more » « less
- 
            Abstract Lake sediment microbial communities vary across ecosystems and are often differentiated across pH. Additionally, these pH‐mediated differences in community composition are often correlated with changes in sediment functioning, such as methane and carbon dioxide production. However, few studies have experimentally tested pH effects on community assembly or considered how microbial community composition influences ecosystem function independent of differences in the environment. We used common garden experiments to test hypotheses about how pH influences microbial community assembly and function in lake sediments. Using inoculum from three acidic lakes and three near‐neutral lakes, we found that both pH environment and inoculum source significantly influenced sediment microbial community assembly. However, inoculum source had a larger effect size for both the sediment methanogen and nonmethanogen communities, indicating important roles of dispersal and drift. Additionally, inoculum source, but not pH environment, significantly influenced sediment methane and carbon dioxide production. This research is one of the first to experimentally test the influence of pH on sediment microbial community composition, and in doing so, we show the community composition significantly influences sediment function independent of pH. Understanding how lake sediment microbial communities are influenced by environment is the first step toward mechanistically linking changes in community composition to ecosystem function, and we provide critical evidence for how changes in microbial community assembly with environmental change will likely alter carbon cycling in lake sediments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
