skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polygonally Anchored Graph Drawing
We investigate force-directed graph drawing techniques under the constraint that some nodes must be anchored to stay within a given polygonal region associated with it (i.e. some positional information is known). The low energy layouts produced by such algorithms may reveal geographic information about nodes with no such knowledge a priori. Some applications of graph drawing with partial positional information include location-based social networks and rail networks, where the geographical locations need not be precise.  more » « less
Award ID(s):
2212129 2046236
PAR ID:
10576334
Author(s) / Creator(s):
; ;
Editor(s):
Felsner, Stefan; Klein, Karsten
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
320
ISSN:
1868-8969
ISBN:
978-3-95977-343-0
Page Range / eLocation ID:
320-320
Subject(s) / Keyword(s):
polygonal anchors force-directed Theory of computation → Computational geometry
Format(s):
Medium: X Size: 3 pages; 536887 bytes Other: application/pdf
Size(s):
3 pages 536887 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep learning-based predictive models, leveraging Electronic Health Records (EHR), are receiving increasing attention in healthcare. An effective representation of a patient's EHR should hierarchically encompass both the temporal relationships between historical visits and medical events, and the inherent structural information within these elements. Existing patient representation methods can be roughly categorized into sequential representation and graphical representation. The sequential representation methods focus only on the temporal relationships among longitudinal visits. On the other hand, the graphical representation approaches, while adept at extracting the graph-structured relationships between various medical events, fall short in effectively integrate temporal information. To capture both types of information, we model a patient's EHR as a novel temporal heterogeneous graph. This graph includes historical visits nodes and medical events nodes. It propagates structured information from medical event nodes to visit nodes and utilizes time-aware visit nodes to capture changes in the patient's health status. Furthermore, we introduce a novel temporal graph transformer (TRANS) that integrates temporal edge features, global positional encoding, and local structural encoding into heterogeneous graph convolution, capturing both temporal and structural information. We validate the effectiveness of TRANS through extensive experiments on three real-world datasets. The results show that our proposed approach achieves state-of-the-art performance. 
    more » « less
  2. In social network, a person located at the periphery region (marginal node) is likely to be treated unfairly when compared with the persons at the center. While existing fairness works on graphs mainly focus on protecting sensitive attributes (e.g., age and gender), the fairness incurred by the graph structure should also be given attention. On the other hand, the information aggregation mechanism of graph neural networks amplifies such structure unfairness, as marginal nodes are often far away from other nodes. In this paper, we focus on novel fairness incurred by the graph structure on graph neural networks, named structure fairness. Specifically, we first analyzed multiple graphs and observed that marginal nodes in graphs have a worse performance of downstream tasks than others in graph neural networks. Motivated by the observation, we propose Structural Fair Graph Neural Network (SFairGNN), which combines neighborhood expansion based structure debiasing with hop-aware attentive information aggregation to achieve structure fairness. Our experiments show SFairGNN can significantly improve structure fairness while maintaining overall performance in the downstream tasks. 
    more » « less
  3. Measuring importance of nodes in a graph is one of the key aspects in graph analysis. Betweenness centrality (BC) measures the amount of influence that a node has over the flow of information in a graph. However, the computation complexity of calculating BC is extremely high with large-scale graphs. This is especially true when analyzing the road networks with millions of nodes and edges. In this study, we propose a deep learning architecture RoadCaps to estimate BC with sub-second latencies. RoadCaps aggregates features from neighbor nodes using Graph Convolutional Networks and estimates the node level BC by mapping low-level concept to high-level information using Capsule Networks. Our empirical benchmarks demonstrates that RoadCaps outperforms base models such as GCN and GCNFCL in both accuracy and robustness. On average, RoadCaps generates a node’s BC value in 7.5 milliseconds. 
    more » « less
  4. Graph neural networks (GNNs) are the primary tool for processing graph-structured data. Unfortunately, the most commonly used GNNs, called Message Passing Neural Networks (MPNNs) suffer from several fundamental limitations. To overcome these limitations, recent works have adapted the idea of positional encodings to graph data. This paper draws inspiration from the recent success of Laplacian-based positional encoding and defines a novel family of positional encoding schemes for graphs. We accomplish this by generalizing the optimization problem that defines the Laplace embedding to more general dissimilarity functions rather than the 2-norm used in the original formulation. This family of positional encodings is then instantiated by considering p-norms. We discuss a method for calculating these positional encoding schemes, implement it in PyTorch and demonstrate how the resulting positional encoding captures different properties of the graph. Furthermore, we demonstrate that this novel family of positional encodings can improve the expressive power of MPNNs. Lastly, we present preliminary experimental results. 
    more » « less
  5. Local structural information can increase the adaptability of graph convolutional networks to large graphs with heterogeneous topology. Existing methods only use relatively simplistic topological information, such as node degrees.We present a novel approach leveraging advanced topological information, i.e., persistent homology, which measures the information flow efficiency at different parts of the graph. To fully exploit such structural information in real world graphs, we propose a new network architecture which learns to use persistent homology information to reweight messages passed between graph nodes during convolution. For node classification tasks, our network outperforms existing ones on a broad spectrum of graph benchmarks. 
    more » « less