skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From Bioreactor to Bulk Rheology: Achieving Scalable Production of Highly Concentrated Circular DNA
Abstract DNA serves as a model system in polymer physics due to its ability to be obtained as a uniform polymer with controllable topology and nonequilibrium behavior. Currently, a major obstacle in the widespread adoption of DNA is obtaining it on a scale and cost basis that accommodates bulk rheology and high‐throughput screening. To address this, recent advancements in bioreactor‐based plasmid DNA production is coupled with anion exchange chromatography producing a unified approach to generating gram‐scale quantities of monodisperse DNA. With this method, 1.1 grams of DNA is obtained per batch to generate solutions with concentrations up to 116 mg mL−1. This solution of uniform supercoiled and relaxed circular plasmid DNA, is roughly 69 times greater than the overlap concentration. The utility of this method is demonstrated by performing bulk rheology measurements at sample volumes up to 1 mL on DNA of different lengths, topologies, and concentrations. The measured elastic moduli are orders of magnitude larger than those previously reported for DNA and allowed for the construction of a time‐concentration superposition curve that spans 12 decades of frequency. Ultimately, these results can provide important insights into the dynamics of ring polymers and the nature of highly condensed DNA dynamics.  more » « less
Award ID(s):
1757371 2340569 2050846
PAR ID:
10576389
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
36
Issue:
35
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A flow cytometry method for enumerating marine heterotrophic bacteria and phytoplankton in a living or preserved sample using a low power solid state near‐ultraviolet laser is described. The method uses Hoechst 34580 to stain DNA in microbial cells in seawater samples. This stain is optimally excited at 375 nm unlike the similar Hoechst 33342, which requires ~ 350 nm excitation only available on more expensive lasers. Phytoplankton abundances from the Hoechst 34580 method are comparable to those of unstained samples and when analyzed by the Hoechst 33342 staining method. With this new method, nonpigmented marine bacteria and phytoplankton abundances are obtained simultaneously in a single sample as the Hoechst emission wavelength (~ 450 nm) is well separated from the emission wavelengths of chlorophyll and phycoerythrin fluorescence. Bacteria abundances are similar between this new method and those obtained with established Hoechst 33342 and SybrGreen I methods. Precision estimates (coefficient of variation) on populations with abundances near ~ 105cells mL−1are 1–3%, increasing to 3–9% at lower cell concentrations of 103cells mL−1. The Hoechst 34580 method is simple, requiring no heating or pretreatment with RNAse, can be used on unpreserved and formaldehyde‐preserved cells, and is amenable to at‐sea use with portable, compact, low power‐requiring flow cytometers. 
    more » « less
  2. Abstract Semiconducting mesocrystalline bulk polymer specimens that exhibit near‐intrinsic properties using channel‐die pressing are demonstrated. A predominant edge‐on orientation is obtained for poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) throughout 2 mm‐thick/wide samples. This persistent mesocrystalline arrangement at macroscopic scales allows reliable evaluation of the electronic charge‐transport anisotropy along all three crystallographic axes, with high mobilities found along the π‐stacking. Indeed, charge‐carrier mobilities of up to 2.3 cm2V−1s−1are measured along the π‐stack, which are some of the highest mobilities reported for polymers at low charge‐carrier densities (drop‐cast films display mobilities of maximum ≈10−3cm2V−1s−1). The structural coherence also leads to an unusually well‐defined photoluminescence line‐shape characteristic of an H‐aggregate (measured from the surface perpendicular to the materials flow), rather than the typical HJ‐aggregate feature usually found for P3HT. The approach is widely applicable: to electrical conductors and materials used in n‐type devices, such as poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (N2200) where the mesocrystalline structure leads to high electron transport along the polymer backbones (≈1.3 cm2V−1s−1). This versatility and the broad applicability of channel‐die pressing signifies its promise as a straightforward, readily scalable method to fabricate bulk semiconducting polymer structures at macroscopic scales with properties typically accessible only by the tedious growth of single crystals. 
    more » « less
  3. Rheological modifiers tune product rheology with a small amount of material. To effectively use rheological modifiers, characterizing the rheology of the system at different compositions is crucial. Two colloidal rod system, hydrogenated castor oil and polyamide, are characterized in a formulation that includes a surfactant (linear alkylbenzene sulfonate) and a depletant (polyethylene oxide). We characterize both rod systems using multiple particle tracking microrheology (MPT) and bulk rheology and build phase diagrams over a large component composition space. In MPT, fluorescent particles are embedded in the sample and their Brownian motion is measured and related to rheological properties. From MPT, we determine that in both systems: (1) microstructure is not changed with increasing colloid concentration, (2) materials undergo a sol–gel transition as depletant concentration increases and (3) the microstructure changes but does not undergo a phase transition as surfactant concentration increases in the absence of depletant. When comparing MPT and bulk rheology results different trends are measured. Using bulk rheology we observe: (1) elasticity of both systems increase as colloid concentration increases and (2) the storage modulus does not change when PEO or LAS concentration is increased. The differences measured with MPT and bulk rheology are likely due to differences in sensitivity and measurement method. This work shows the utility of using both techniques together to fully characterize rheological properties over a large composition space. These gelation phase diagrams will provide a guide to determine the composition needed for desired rheological properties and eliminate trial-and-error experiments during product formulation. 
    more » « less
  4. New preservation technologies may allow for organ banking similar to blood and biomaterial banking approaches. Using cryoprotective agents (CPAs), aqueous solutions with organic components such as DMSO, propylene glycol, and added salts and sugars, organs can be used to vitrify and store organs at −140 °C. When needed, these organs can be rewarmed in a rapid and uniform manner if CPAs are supplemented with iron oxide nanoparticles (IONPs) in an applied radiofrequency field. Speed and uniformity of warming are both IONP concentration and CPA suspension dependent. Here we present a coating method of small molecule phosphonate linker (PLink) and biocompatible polymer ( i.e. polyethylene glycol PEG) that tunes stability and increases the maximum allowable concentration of IONPs in CPA suspension. PLink contains a phosphonate 'anchor' for high irreversible binding to iron oxide and a carboxylic acid 'handle' for ligand attachment. PLink-PEG removes and replaces the initial coating layer of commercially available IONPs (EMG1200 (hydrophobic) and EMG308 (hydrophilic) Ferrotec, Inc., increasing colloidal stability and decreasing aggregation in both water and CPAs, (verified with dynamic light scattering) from minutes (uncoated) to up to 6 days. Heating properties of EMG1200, specific absorption rate (SAR), measured using an applied field of 360 kHz and 20 kA m −1 , increased from 20 to 180 W per g Fe with increasing PLink-PEG5000. PEG replacing the initially hydrophobic coating decreased aggregation in water and CPA, consistent with earlier studies on heating performance. Furthermore, although the size is minimized at 0.20 mol PEG per g Fe, heating is not maximized until concentrations above 0.43 mol PEG per g Fe on EMG1200. SAR on hydrophilic EMG308 was preserved at 400 W per g Fe regardless of the amount of PLink added to the core. Herein concentrations of IONP in VS55 (common CPA) significantly above our previous capabilities, sIONP at 10 mg Fe per mL, was reached, 25 mg Fe per mL of 308-PEG5000 and 60 mg Fe per mL of 1200-PEG5000, approaching stock EMG308 in water, 60 mg Fe per mL. Furthermore, at these concentrations cryopreserved Human dermal fibroblast cells were successfully nanowarmed (at applied fields described above), with higher viability as compared to convective rewarming in a water bath and heating rate close to 200 °C min −1 , 2.5 times faster than our current system. Using PLink as the coating method allowed for higher concentrations of IONPs to be successfully suspended in CPA without affecting the heating ability. Additionally, the model ligand, PEG, allowed for increased stability over time in nanowarming experiments. 
    more » « less
  5. Abstract Herein, we report the photoinitiated polymerization‐induced self‐assembly (photo‐PISA) of spherical micelles consisting of proapoptotic peptide–polymer amphiphiles. The one‐pot synthetic approach yielded micellar nanoparticles at high concentrations and at scale (150 mg mL−1) with tunable peptide loadings up to 48 wt. %. The size of the micellar nanoparticles was tuned by varying the lengths of hydrophobic and hydrophilic building blocks. Critically, the peptide‐functionalized nanoparticles imbued the proapoptotic “KLA” peptides (amino acid sequence: KLAKLAKKLAKLAK) with two key properties otherwise not inherent to the sequence: 1) proteolytic resistance compared to the oligopeptide alone; 2) significantly enhanced cell uptake by multivalent display of KLA peptide brushes. The result was demonstrated improved apoptosis efficiency in HeLa cells. These results highlight the potential of photo‐PISA in the large‐scale synthesis of functional, proteolytically resistant peptide–polymer conjugates for intracellular delivery. 
    more » « less