Abstract Rates of land surface processes provide insights into climatic and tectonic influences on topography. Bedrock incision rates are estimated by dating perched landforms such as strath terraces, assuming a constant bedrock incision rate from terrace abandonment to the next terrace level or present river level. These estimates express biases from the stochastic nature of sediment and water discharge in controlling river incision as well as from using a mobile channel elevation as a reference frame, leading to different incision rates when calculated over different timeframes. We introduce a 1‐D model incorporating fluvial mechanics, tectonics, sediment, and climate variability to predict these biases and assess their sensitivity to climate and tectonics. Findings suggest biases intensify under highly variable climates and slow rock uplift, with climate periodicity being a primary control for our modeled scenarios. Our model provides a mechanism to improve river incision measurement uncertainty, impacting paleoclimate and tectonic geomorphology reconstructions.
more »
« less
This content will become publicly available on March 9, 2026
The impact of river capture on fluvial terraces and bedrock incision
Abstract River terraces are commonly used to infer climate and tectonic histories. Yet, it is increasingly recognised that other processes, such as river capture, can affect river terrace genesis and incision rates and patterns. In this study, we conduct a field‐based investigation of river terrace sequences along the Kolokithas and Varitis Rivers in central Crete, Greece, that share a confluence and preserve geomorphic evidence for the recent capture of the Kolokithas headwaters by the Varitis. We use digital topographic analysis, mapping, and optically stimulated luminescence (OSL) geochronology to quantify the river terrace and bedrock incision response to river capture. Topographic analysis indicates the Varitis captured ~30 km2of drainage area from the Kolokithas. We find differences in terrace characteristics, number of terraces, and incision rates and patterns on the adjacent valleys. The Kolokithas has four terrace levels, and the Varitis has five. All terraces are strath terraces, except for the oldest on the Kolokithas, a ~8 m thick fill terrace that starkly contrasts the time‐equivalent ~1–2 m thick strath terrace on the Varitis. Relative and absolute age control suggests three Pleistocene terraces were emplaced during cooler climate intervals, and two Holocene terraces are perhaps because of anthropogenic disturbances. The incision patterns differ on each valley, with generally more incision upstream on the Varitis relative to the Kolokithas. Incision rates on the Varitis are roughly twice as high as on the Kolokithas, but the average incision rate of both valleys combined is comparable to coastal rock uplift rates derived from marine terraces. Collectively, our results suggest that fluvial systems are sensitive to climate and tectonic processes even when affected by geomorphic disturbances, like river capture and beheading. However, care must be taken when interpreting river terraces as direct records of climate and tectonic processes, particularly when working on a single river valley.
more »
« less
- PAR ID:
- 10576519
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Earth Surface Processes and Landforms
- Volume:
- 50
- Issue:
- 3
- ISSN:
- 0197-9337
- Format(s):
- Medium: X Size: p. 1-17
- Size(s):
- p. 1-17
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Rates of northern Alaska Range thrust system deformation are poorly constrained. Shortening at the system's west end is focused on the Kantishna Hills anticline. Where the McKinley River cuts across the anticline, the landscape records both Late Pleistocene deformation and climatic change. New optically stimulated luminescence and cosmogenic10Be depth profile dates of three McKinley River terrace levels (~22, ~18, and ~14–9 ka) match independently determined ages of local glacial maxima, consistent with climate‐driven terrace formation. Terrace ages quantify rates of differential bedrock incision, uplift, and shortening based on fault depth inferred from microseismicity. Differential rock uplift and incision (≤1.4 m/kyr) drive significant channel width narrowing in response to ongoing folding at a shortening rate of ~1.2 m/kyr. Our results constrain northern Alaska Range thrust system deformation rates, and elucidate superimposed landscape responses to Late Pleistocene climate change and active folding with broad geomorphic implications.more » « less
-
Abstract Alluvial rivers aggrade, incise, and adjust their sediment‐transport rates in response to changing sediment and water supply. Fluvial landforms, such as river terraces, and downstream stratigraphic archives may therefore record information about past environmental change. Using a physically based model describing sediment transport and long‐profile evolution of alluvial rivers, we explore how their responses to environmental change depend on distance downstream, forcing timescales, and whether sediment or water supply is varied. We show that amplitudes of aggradation and incision, and therefore the likelihood of terrace formation, are greater upstream and in shorter and/or wetter catchments. Aggradation and incision, and therefore terrace ages, may also lag behind environmental change. How sediment‐transport rates evolve depends strongly on whether water or sediment supply is varied. Diverse responses to environmental change could arise in natural alluvial valleys, controlled by their geometry and hydrology, with important implications for paleo‐environmental interpretations of fluvial archives.more » « less
-
40Ar/39Ar detrital sanidine (DS) dating of river terraces provides new insights into the evolution and bedrock incision history of the San Juan River, a major tributary of the Colorado River, USA, at the million-year time scale. We dated terrace flights from the San Juan−Colorado River confluence to the San Juan Rocky Mountains. We report >5700 40Ar/ 39Ar dates on single DS grains from axial river facies within several meters above the straths of 30 individual terraces; these yielded ∼2.5% young (<2 Ma) grains that constrain maximum depositional ages (MDAs) and minimum incision rates. The most common young grains were from known caldera eruptions: 0.63 Ma grains derived from the Yellowstone Lava Creek B eruption, and 1.23 Ma and 1.62 Ma grains derived from two Jemez Mountains eruptions in New Mexico. Agreement of a DS-derived MDA age with a refined cosmogenic burial age from Bluff, Utah, indicates that the DS MDA closely approximates the true depositional age in some cases. In a given reach, terraces with ca. 0.6 Ma grains are commonly about half as high above the river as those with ca. 1.2 Ma grains, suggesting that the formation of the terrace flights likely tracks near-steady bedrock incision over the past 1.2 Ma. Longitudinal profile analysis of the San Juan River system shows variation in area-normalized along-stream gradients: a steeper (ksn = 150) reach near the confluence with the Colorado River, a shallower gradient (ksn = 70) in the central Colorado Plateau, and steeper (ksn = 150) channels in the upper Animas River basin. These reaches all show steady bedrock incision, but rates vary by >100 m/Ma, with 247 m/Ma at the San Juan−Colorado River confluence, 120−164 m/Ma across the core of the Colorado Plateau, and 263 m/Ma in the upper Animas River area of the San Juan Mountains. The combined dataset suggests that the San Juan River system is actively adjusting to base-level fall at the Colorado River confluence and to the uplift of the San Juan Mountains headwaters relative to the core of the Colorado Plateau. These fluvial adjustments are attributed to ongoing mantle-driven differential epeirogenic uplift that is shaping the San Juan River system as well as rivers and landscapes elsewhere in the western United States.more » « less
-
Abstract Mass movements from glacial and lahar terraces in the middle and lower reaches of rivers draining the Washington Cascade Range to Puget Sound may represent a substantial but poorly quantified portion of those rivers' sediment supply and pose significant mass movement hazards. We used repeat LiDAR elevation data, aerial imagery, and well logs to quantify and characterize terrace sediment delivery in nine major watersheds over a median period of 12 years. In the 1,946 river kilometers for which repeat LiDAR was available (71% of the 2,736 total river kilometers flanked by terraces), 167 mass movements eroded 853,600 ± 19,400 m3/yr. Analysis of mass movement frequency and volume indicates that terrace sediment delivery is dominated by small, frequent mass movements, as opposed to large, infrequent ones like the 2014 Oso landslide. This sediment source is low in river networks, well connected to streams, and has a substantial coarse‐grained and durable component, all of which increase its significance to sedimentation in developed, lowland reaches. However, rates of terrace sediment delivery vary among basins and between adjacent terraces, which are stratigraphically laterally heterogeneous. While lateral fluvial erosion is usually necessary to initiate terrace mass movements, valley bottom geometry and terrace stratigraphy poorly predict erosion volume, which is better predicted by hillslope geometry and mass movement style. Effective management of sedimentation and mass movement hazard should acknowledge the importance of terrace sediment delivery and the variability among and within watersheds in sediment delivery, sediment characteristics, and failure mechanisms.more » « less
An official website of the United States government
