Optical distortion caused by changes in the refractive index of fluid flow is a common issue in flow visualization using techniques, such as particle image velocimetry (PIV). In thermally driven convection, this distortion can severely interfere with PIV results due to the ubiquitous density and, therefore, refractive index heterogeneity in the fluid. The distortion also varies spatially and temporally, adding to the challenge. We propose a composite filter, the shadow-affected PIV region filter, which combines a series of conventional image filters to address this issue, focusing on optical distortion of thermal plumes in laminar flow. We verify the effectiveness of the filter using both synthetic particle images created from ray tracing and real particle images from the laboratory. For the first time, we effectively mitigate the optical distortion from plumes while preserving the in-plane plume velocity and overall flow pattern, with the PIV data alone. Our filter is efficient and does not require additional measurements, expensive ray tracing, or a large dataset to begin with. It can be extended to separate the flow field and the effect of optical distortion in other fluid experiments when the two components are visually distinct. Additionally, this filter can serve as a baseline algorithm for comparison when developing more advanced methods like neural networks.
more »
« less
Development and laboratory assessment of a subsea particle image velocimetry system for bubble and turbulence measurements in marine seeps
Abstract We present the development and laboratory evaluation of RPiPIV, an underwater particle image velocimetry (PIV) system controlled by a Raspberry Pi. Designed specifically to measure bubble characteristics and bubble‐induced flow in natural hydrocarbon seeps, RPiPIV comprises three primary pressure enclosures, housing a consumer‐grade laser for particle illumination, a Gig‐E camera for image capture, a Raspberry Pi for system control, and essential supporting electronics for voltage conversion, battery management, and remote connection. Operating on 24–36 V DC power, the RPiPIV system can be deployed tethered onto a remotely operated vehicle or self‐contained for extended duration measurements. Comparing the RPiPIV and a laboratory high‐speed camera system, we conducted assessments of bubble imaging in a bubble stream and PIV measurements in a water jet, bubble‐chain flow, and single‐orifice bubble plume. Laboratory assessments revealed that bubble diameter estimates differed by approximately 5%. In PIV measurements, mean axial velocities exhibited differences of approximately 5%, while turbulent normal and shear stresses showed variances within 10–30%. Dissipation rates of turbulence kinetic energy differed by approximately 60%. These findings underscore the system's potential for reliably quantifying complex multiphase flow characteristics in deep‐sea environments.
more »
« less
- PAR ID:
- 10576650
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography: Methods
- Volume:
- 23
- Issue:
- 3
- ISSN:
- 1541-5856
- Format(s):
- Medium: X Size: p. 139-154
- Size(s):
- p. 139-154
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A new method for fluid–structure interaction (FSI) diagnostics to simultaneously capture time-resolved three-dimensional, three-component (3D3C) velocity fields and structural deformations using a single light field camera is presented. A light field camera encodes both spatial and angular information of light rays collected by a conventional imaging lens that allows for the 3D reconstruction of a scene from a single image. Building upon this capability, a light field fluid–structure interaction (LF FSI) methodology is developed with a focus on experimental scenarios with low optical access. Proper orthogonal decomposition (POD) is used to separate particle and surface information contained in the same image. A correlation-based depth estimation technique is introduced to reconstruct instantaneous surface positions from the disparity between angular perspectives and conventional particle image velocimetry (PIV) is used for flow field reconstruction. Validation of the methodology is achieved using synthetic images of simultaneously moving flat plates and a vortex ring with a small increase in uncertainty under ~0.5 microlenses observed in both flow and structure measurement compared to independent measurements. The method is experimentally verified using a flat plate translating along the camera’s optical axis in a flow field with varying particle concentrations. Finally, simultaneous reconstructions of the flow field and surface shape around a flexible membrane are presented, with the surface reconstruction further validated using simultaneously captured stereo images. The findings indicate that the LF FSI methodology provides a new capability to simultaneously measure large-scale flow characteristics and structural deformations using a single camera.more » « less
-
Abstract The influence of several potential error sources and non-ideal experimental effects on the accuracy of a wavelet-based optical flow velocimetry (wOFV) method when applied to tracer particle images is evaluated using data from a series of synthetic flows. Out-of-plane particle displacements, severe image noise, laser sheet thickness reduction, and image intensity non-uniformity are shown to decrease the accuracy of wOFV in a similar manner to correlation-based particle image velocimetry (PIV). For the error sources tested, wOFV displays a similar or slightly increased sensitivity compared to PIV, but the wOFV results are still more accurate than PIV when the magnitude of the non-ideal effects remain within expected experimental bounds. For the majority of test cases, the results are significantly improved by using image pre-processing filters and the magnitude of improvement is consistent between wOFV and PIV. Flow divergence does not appear to have an appreciable effect on the accuracy of wOFV velocity estimation, even though the underlying fluid transport equation on which wOFV is based implicitly assumes that the motion is divergence-free. This is a significant finding for the broader applicability of planar velocimetry measurements using wOFV. Finally, it is noted that the accuracy of wOFV is not reduced notably in regions of the image between tracer particles, as long as the overall seeding density is not too sparse i.e. below 0.02 particles per pixel. This explicitly demonstrates that wOFV (when applied to particle images) yields an accurate whole field measurement, and not only at or adjacent to the discrete particle locations.more » « less
-
AbstractWe investigate the feasibility of in-laboratory tomographic X-ray particle tracking velocimetry (TXPTV) and consider creeping flows with nearly density matched flow tracers. Specifically, in these proof-of-concept experiments we examined a Poiseuille flow, flow through porous media and a multiphase flow with a Taylor bubble. For a full 360$$^\circ$$ computed tomography (CT) scan we show that the specially selected 60 micron tracer particles could be imaged in less than 3 seconds with a signal-to-noise ratio between the tracers and the fluid of 2.5, sufficient to achieve proper volumetric segmentation at each time step. In the pipe flow, continuous Lagrangian particle trajectories were obtained, after which all the standard techniques used for PTV or PIV (taken at visible wave lengths) could also be employed for TXPTV data. And, with TXPTV we can examine flows inaccessible with visible wave lengths due to opaque media or numerous refractive interfaces. In the case of opaque porous media we were able to observe material accumulation and pore clogging, and for flow with Taylor bubble we can trace the particles and hence obtain velocities in the liquid film between the wall and bubble, with thickness of liquid film itself also simultaneously obtained from the volumetric reconstruction after segmentation. While improvements in scan speed are anticipated due to continuing improvements in CT system components, we show that for the flows examined even the presently available CT systems could yield quantitative flow data with the primary limitation being the quality of available flow tracers. Graphic abstractmore » « less
-
Holger, Babinsky (Ed.)Abstract This paper presents experimental studies on a novel active high-frequency coaxial injector system designed for enhanced flow mixing and control at extreme flow velocity conditions. The flow dynamics and mixing characteristics of the system operating at 15kHz were captured using planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) techniques and compared against its steady and baseline modes. In pulsed mode, this active injection system delivers a pulsed supersonic actuation air jet at the inner core of the coaxial nozzle that provides large mean and fluctuating velocity profiles in the shear layers of an acetone-seeded fluid stream injected surrounding the core through an annular nozzle. The instantaneous velocity, vorticity and acetone concentration fields of the injector are discussed. The high-frequency streamwise vortices and shockwaves tailored to the mean flow significantly enhanced supersonic flow mixing between the fluids compared to a classical steady coaxial configuration operating at the same input pressure. The paper analyses the dynamic and diffusion characteristics of this active coaxial injection system, which may have potential for supersonic mixing applications.more » « less
An official website of the United States government
