skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: Three-dimensional fluid–structure interaction diagnostics using a single camera
A new method for fluid–structure interaction (FSI) diagnostics to simultaneously capture time-resolved three-dimensional, three-component (3D3C) velocity fields and structural deformations using a single light field camera is presented. A light field camera encodes both spatial and angular information of light rays collected by a conventional imaging lens that allows for the 3D reconstruction of a scene from a single image. Building upon this capability, a light field fluid–structure interaction (LF FSI) methodology is developed with a focus on experimental scenarios with low optical access. Proper orthogonal decomposition (POD) is used to separate particle and surface information contained in the same image. A correlation-based depth estimation technique is introduced to reconstruct instantaneous surface positions from the disparity between angular perspectives and conventional particle image velocimetry (PIV) is used for flow field reconstruction. Validation of the methodology is achieved using synthetic images of simultaneously moving flat plates and a vortex ring with a small increase in uncertainty under ~0.5 microlenses observed in both flow and structure measurement compared to independent measurements. The method is experimentally verified using a flat plate translating along the camera’s optical axis in a flow field with varying particle concentrations. Finally, simultaneous reconstructions of the flow field and surface shape around a flexible membrane are presented, with the surface reconstruction further validated using simultaneously captured stereo images. The findings indicate that the LF FSI methodology provides a new capability to simultaneously measure large-scale flow characteristics and structural deformations using a single camera.  more » « less
Award ID(s):
2145189
PAR ID:
10644411
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of fluids and structures
Volume:
139
ISSN:
0889-9746
Page Range / eLocation ID:
104423
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The interactions between fluid flow and structural components of collapsible tubes are representative of those in several physiological systems. Although extensively studied, there exists a lack of characterization of the three-dimensionality in the structural deformations of the tube and its influence on the flow field. This experimental study investigates the spatio-temporal relationship between 3D tube geometry and the downstream flow field under conditions of fully open, closed, and slamming-type oscillating regimes. A methodology is implemented to simultaneously measure three-dimensional surface deformations in a collapsible tube and the corresponding downstream flow field. Stereophotogrammetry was used to measure tube deformations, and simultaneous flow field measurements included pressure and planar Particle Image Velocimetry (PIV) data downstream of the collapsible tube. The results indicate that the location of the largest collapse in the tube occurs close to the downstream end. In the oscillating regime, sections of the tube downstream of the largest mean collapse experience the largest oscillations in the entire tube that are completely coherent and in phase. At a certain streamwise distance upstream of the largest collapse, a switch in the direction of oscillations occurs with respect to those downstream. Physically, when the tube experiences constriction downstream of the location of the largest mean collapse, this causes the accumulation of fluid and build-up of pressure in the upstream regions and an expansion of these sections. Fluctuations in the downstream flow field are significantly influenced by tube fluctuations along the minor axes. The fluctuations in the downstream flowfield are influenced by the propagation of disturbances due to oscillations in tube geometry, through the advection of fluid through the tube. Further, the manifestation of the LU-type pressure fluctuations is found to be due to the variation in the propagation speed of the disturbances during the different stages within a period of oscillation of the tube. 
    more » « less
  2. This paper introduces a simple three-dimensional (3D) stereoscopic method using a single unit of an imaging device consisting of a charge-coupled device (CCD) and a zoom lens. Unlike conventional stereoscopy, which requires a pair of imaging devices, 3D surface imaging is achieved by 3D image reconstruction of two images obtained from two different camera positions by scanning. The experiments were performed by obtaining two images of the measurement target in two different ways: (1) by moving the object while the imaging device is stationary, and (2) by moving the imaging device while the object is stationary. Conventional stereoscopy is limited by disparity errors in 3D image reconstruction because a pair of imaging devices is not ideally identical and alignment errors are always present in the imaging system setup. The proposed method significantly reduced the disparity error in 3D image reconstruction, and the calibration process of the imaging system became simple and convenient. The proposed imaging system showed a disparity error of 0.26 in the camera pixel. 
    more » « less
  3. null (Ed.)
    This paper presents a nonlinear control method, which achieves simultaneous fluid flow velocity control and limit cycle oscillation (LCO) suppression in a flexible airfoil. The proposed control design is based on a dynamic model that incorporates the fluid structure interactions (FSI) in the airfoil. The FSI describe how the flow field velocity at the surface of a flexible structure gives rise to fluid forces acting on the structure. In the proposed control method, the LCO are controlled via control of the flow field velocity near the surface of the airfoil using surface-embedded synthetic jet actuators. Specifically, the flow field velocity profile is driven to a desired time-varying profile, which results in a LCO-stabilizing fluid forcing function acting on the airfoil. A Lyapunov-based stability analysis is used to prove that the active flow control system asymptotically converges to the LCO-stabilizing forcing function that suppresses the LCO. Numerical simulation results are provided to demonstrate the performance of the proposed active flow-and-LCO suppression method. 
    more » « less
  4. This paper investigates the effect of smoothing operation in 3D reconstruction using a plenoptic camera. A plenoptic camera - also known as light field camera - features a commercial off the shelf camera with added microlens array (MLA) behind the imaging lens, directly in front of the sensor. The main lens focuses the light to the MLA plane, where each microlens then re-directs the light to small regions of pixels behind, each pixel corresponding to different angle of incident (T. Fahringer (2015)) (Adelson and Wang (1992)). Thus, MLA encodes angular information of incident light rays into the recorded image that assist to acquire 4D information (u,v,s,t) of light-field including both position and angular information of light rays captured by the camera (Ng et al. (2005)) (Adelson and Wang (1992)). 
    more » « less
  5. A high-order in space spectral-element methodology for the solution of a strongly coupled fluid-structure interaction (FSI) problem is developed. A methodology is based on a partitioned solution of incompressible fluid equations on body-fitted grids, and nonlinearly-elastic solid deformation equations coupled via a fixed-point iteration approach with Aitken relaxation. A comprehensive verification strategy of the developed methodology is presented, including h-, p-and temporal refinement studies. An expected order of convergence is demonstrated first separately for the corresponding fluid and solid solvers, followed by a self-convergence study on a coupled FSI problem (self-convergence refers to a convergence to a reference solution obtained with the same solver at higher resolution). To this end, a new three-dimensional fluid-structure interaction benchmark is proposed for a verification of the FSI codes, which consists of a fluid flow in a channel with one rigid and one flexible wall. It is shown that, due to a consistent problem formulation, including initial and boundary conditions, a high-order spatial convergence on a fully coupled FSI problem can be demonstrated. Finally, a developed framework is applied successfully to a Direct Numerical Simulation of a turbulent flow in a channel interacting with a compliant wall, where the fluid-structure interface is fully resolved. 
    more » « less