A pathogen arriving on a host typically encounters a diverse community of microbes that can shape priority effects, other within-host interactions and infection outcomes. In plants, environmental nutrients can drive trade-offs between host growth and defence and can mediate interactions between co-infecting pathogens. Nutrients may thus alter the outcome of pathogen priority effects for the host, but this possibility has received little experimental investigation. To disentangle the relationship between nutrient availability and co-infection dynamics, we factorially manipulated the nutrient availability and order of arrival of two foliar fungal pathogens (Rhizoctonia solaniandColletotrichum cereale) on the grass tall fescue (Lolium arundinaceum) and tracked disease outcomes. Nutrient addition did not influence infection rates, infection severity or plant biomass.Colletotrichum cerealefacilitatedR. solani, increasing its infection rate regardless of their order of inoculation. Additionally, simultaneous andC. cereale-first inoculations decreased plant growth and—in plants that did not receive nutrient addition—increased leaf nitrogen concentrations compared to uninoculated plants. These effects were partially, but not completely, explained by the duration and severity of pathogen infections. This study highlights the importance of understanding the intricate associations between the order of pathogen arrival, host nutrient availability and host defence to better predict infection outcomes.
more »
« less
This content will become publicly available on March 5, 2026
Disease epidemics and species interactions: A manipulation of seasonal establishment of fungal diseases in an old field
Abstract Many disease epidemics recur seasonally, and such seasonal epidemics can be shaped by species interactions among parasites, pathogens, or other microbes. Field experiments are a classic approach for understanding species interactions but are rarely used to study seasonal epidemics. Our research objective was to help fill this gap by manipulating the seasonal timing of the establishment of infectious diseases while tracking epidemics and other ecological responses. To do this, we conducted a multiyear field experiment in an old field in the Piedmont of North Carolina, USA, dominated by the grass species tall fescue (Lolium arundinaceum(Schreb). Darbysh). In the field, tall fescue experienced seasonal epidemics of multiple foliar fungal diseases: anthracnose in spring, brown patch in mid‐summer, and crown rust in late summer to fall. In a fully randomized design, we applied four fungicide treatments to replicate plots of intact vegetation in specific seasons to manipulate the timing of disease epidemics. One treatment was designed to delay the establishment of anthracnose until mid‐summer, and another to delay the establishment of both anthracnose and brown patch until fall. In a third treatment, fungicide was applied year‐round, and, in a fourth treatment, fungicide was never applied. The experiment comprised 64 plots, each 2 m × 2 m, surveyed from May 2017 to February 2020. Here, we report a dataset documenting responses in the community structure of both plants and foliar fungi. To track disease prevalence in the host population across seasons and years, this dataset includes monthly leaf‐level observations of the disease status of over 100,000 leaves. To quantify transmission and investigate within‐host pathogen interactions, we longitudinally surveyed disease status in host individuals of known age at least weekly over two growing seasons. Finally, the dataset includes annual data on infection prevalence of the systemic fungal endophyteEpichloë coenophiala, community‐level aboveground plant biomass, and plant community cover. These data can be used for meta‐analyses, comparisons, and syntheses across systems as ecologists seek to predict and mechanistically understand seasonal disease epidemics. There are no copyrights on the dataset, and we request that users of this dataset cite this paper in all publications resulting from its use.
more »
« less
- Award ID(s):
- 2308472
- PAR ID:
- 10576762
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 106
- Issue:
- 3
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Infectious disease systems frequently exhibit strong seasonal patterns, yet the mechanisms that underpin intra‐annual cycles are unclear, particularly in tropical regions. We hypothesized that host immune function fluctuates seasonally, contributing to oscillations in infection patterns in a tropical disease system. To test this hypothesis, we investigated a key host defense of amphibians against a lethal fungal pathogen,Batrachochytrium dendrobatidis(Bd). We integrated two field experiments in which we perturbed amphibian skin secretions, a critical host immune mechanism, in Panamanian rocket frogs (Colostethus panamansis). We found that this immunosuppressive technique of reducing skin secretions in wild frog populations increasedBdprevalence and infection intensity, indicating that this immune defense contributes to resistance toBdin wild frog populations. We also found that the chemical composition and anti‐Bdeffectiveness of frog skin secretions varied across seasons, with greater pathogen inhibition during the dry season relative to the wet season. These results suggest that the effectiveness of this host defense mechanism shifts across seasons, likely contributing to seasonal infection patterns in a lethal disease system. More broadly, our findings indicate that host immune defenses can fluctuate across seasons, even in tropical regions where temperatures are relatively stable, which advances our understanding of intra‐annual cycles of infectious disease dynamics.more » « less
-
Plants serve as critical links between above- and below-ground microbial communitites, both influencing and being influenced by microbes in these two realms. Below-ground microbial communities are expected to respond to soil resource environments, which are mediated by the roots of plants that can, in turn, be influenced by the above-ground community of foliar endophytes. For instance, diverse plant communities deposit more, and more diverse, nutrients into the soil, and this deposition is often increased when foliar pathogens are removed. Differences in soil resources can alter soil microbial composition and phenotypes, including inhibitory capacity, resource use, and antibiotic resistance. In this work, we consider plots differing in plant richness and application of foliar fungicide, evaluating consequences on soil resource levels and root-associatedStreptomycesphenotypes. Soil carbon, nitrogen, phosphorus, potassium, and organic matter were greater in samples from polyculture than monoculture, yet this increase was surprisingly offset when foliar fungal communities were disrupted. We find thatStreptomycesphenotypes varied more between richness plots—with theStreptomycesfrom polyculture showing lower inhibitory capacity, altered resource-use profiles, and greater antibiotic resistance—than between subplots with/without foliar fungicide. Where foliar fungicide affected phenotypes, it did so differently in polyculture than in monoculture, for instance decreasing niche width and overlap in monoculture while increasing them in polyculture. No differences in phenotype were correlated with soil nutrient levels, suggesting the need for further research looking more closely at soil resource diversity and particular compounds that were found to differ between treatments.more » « less
-
High juvenile susceptibility drives infectious disease epidemics across kingdoms, yet the evolutionary mechanisms that maintain this susceptibility are unclear. We tested the hypothesis that juvenile susceptibility is maintained by high costs of resistance by quantifying the genetic correlation between host fitness and age-specific innate resistance to a fungal pathogen in a wild plant. We separately measured the resistance of 45 genetic families of the wild plant,Silene latifolia,to its endemic fungal pathogen,Microbotryum lychnidis-dioicae,at four ages in a controlled inoculation experiment. We then grew these same families in a field common garden and tracked survival and fecundity over a 2-y period and quantified the correlation between age-specific resistance and fitness in the field. We found significant fitness costs associated with disease resistance at juvenile but not at adult host stages. We then used an age-structured compartmental model to show that the magnitude of these costs is sufficient to prevent the evolution of higher juvenile resistance in models, allowing the disease to persist. Taken together, our results show that costs of resistance vary across host lifespan, providing an evolutionary explanation for the maintenance of juvenile susceptibility.more » « less
-
Abstract Emerging infectious diseases have caused population declines and biodiversity loss. The ability of pathogens to survive in the environment, independent of their host, can exacerbate disease impacts and increase the likelihood of species extinction. Control of pathogens with environmental stages remains a significant challenge for conservation and effective management strategies are urgently needed.We examined the effectiveness of managing environmental exposure to reduce the impacts of an emerging infectious disease of bats, white‐nose syndrome (WNS). We used a chemical disinfectant, chlorine dioxide (ClO2), to experimentally reducePseudogymnoascus destructans, the fungal pathogen causing WNS, in the environment. We combined laboratory experiments with 3 years of field trials at four abandoned mines to determine whether ClO2could effectively removeP. destructansfrom the environment, reduce host infection and limit population impacts.ClO2was effective at killingP. destructansin vitro across multiple concentrations. In field settings, higher concentrations of ClO2treatment were needed to sufficiently reduce viableP. destructansconidia in the environment.The reduction in the environmental reservoir at treatment sites resulted in lower fungal loads on bats compared to untreated control populations. Survival following treatment was also higher in little brown bats (Myotis lucifugus), and trended higher for tricolored bats (Perimyotis subflavus).Synthesis and applications. Our results highlight that targeted management of sources for environmental transmission can be an effective control strategy for wildlife disease. We found that successfully reducing pathogen in the environment decreased disease severity and increased survival, but required higher treatment exposure than was effective in laboratory experiments, and the effects varied among species. More broadly, our findings have implications for other emerging wildlife diseases with free‐living pathogen stages by highlighting how the degree of environmental contamination can have cascading impacts on hosts, presenting an opportunity for intervention.more » « less
An official website of the United States government
