skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2308472

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many disease epidemics recur seasonally, and such seasonal epidemics can be shaped by species interactions among parasites, pathogens, or other microbes. Field experiments are a classic approach for understanding species interactions but are rarely used to study seasonal epidemics. Our research objective was to help fill this gap by manipulating the seasonal timing of the establishment of infectious diseases while tracking epidemics and other ecological responses. To do this, we conducted a multiyear field experiment in an old field in the Piedmont of North Carolina, USA, dominated by the grass species tall fescue (Lolium arundinaceum(Schreb). Darbysh). In the field, tall fescue experienced seasonal epidemics of multiple foliar fungal diseases: anthracnose in spring, brown patch in mid‐summer, and crown rust in late summer to fall. In a fully randomized design, we applied four fungicide treatments to replicate plots of intact vegetation in specific seasons to manipulate the timing of disease epidemics. One treatment was designed to delay the establishment of anthracnose until mid‐summer, and another to delay the establishment of both anthracnose and brown patch until fall. In a third treatment, fungicide was applied year‐round, and, in a fourth treatment, fungicide was never applied. The experiment comprised 64 plots, each 2 m × 2 m, surveyed from May 2017 to February 2020. Here, we report a dataset documenting responses in the community structure of both plants and foliar fungi. To track disease prevalence in the host population across seasons and years, this dataset includes monthly leaf‐level observations of the disease status of over 100,000 leaves. To quantify transmission and investigate within‐host pathogen interactions, we longitudinally surveyed disease status in host individuals of known age at least weekly over two growing seasons. Finally, the dataset includes annual data on infection prevalence of the systemic fungal endophyteEpichloë coenophiala, community‐level aboveground plant biomass, and plant community cover. These data can be used for meta‐analyses, comparisons, and syntheses across systems as ecologists seek to predict and mechanistically understand seasonal disease epidemics. There are no copyrights on the dataset, and we request that users of this dataset cite this paper in all publications resulting from its use. 
    more » « less
  2. The structure of the leaf microbiome can alter host fitness and change in response to abiotic and biotic factors, like seasonality, climate, and leaf age. However, relatively few studies consider the influence of host age on microbial communities at a time scale of a few days, a short time scale relevant to microbes. To understand how host age modulates changes in the fungal and bacterial leaf microbiome on a short time scale, we ran independent field and greenhouse-based studies and characterized phyllosphere communities using next-generation sequencing approaches. Our field study characterized changes in the fungal and bacterial phyllosphere by examining leaves of different relative ages across individuals, whereas the greenhouse study examined changes in the fungal microbiome by absolute leaf age across individuals. Together, these results indicate that fungal communities are susceptible to change as a leaf ages as evidenced by shifts in the diversity of fungal taxa both in the field and the greenhouse. Similarly, there were increases in the diversity of fungal taxa by leaf age in the greenhouse. In bacterial communities in the field, we observed changes in the diversity, composition, and relative abundance of common taxa. These findings build upon previous literature characterizing host-associated communities at longer time scales and provide a foundation for targeted work examining how specific microbial taxa might interact with each other, such as fine-scale interactions between pathogenic and non-pathogenic species. 
    more » « less
  3. A pathogen arriving on a host typically encounters a diverse community of microbes that can shape priority effects, other within-host interactions and infection outcomes. In plants, environmental nutrients can drive trade-offs between host growth and defence and can mediate interactions between co-infecting pathogens. Nutrients may thus alter the outcome of pathogen priority effects for the host, but this possibility has received little experimental investigation. To disentangle the relationship between nutrient availability and co-infection dynamics, we factorially manipulated the nutrient availability and order of arrival of two foliar fungal pathogens (Rhizoctonia solaniandColletotrichum cereale) on the grass tall fescue (Lolium arundinaceum) and tracked disease outcomes. Nutrient addition did not influence infection rates, infection severity or plant biomass.Colletotrichum cerealefacilitatedR. solani, increasing its infection rate regardless of their order of inoculation. Additionally, simultaneous andC. cereale-first inoculations decreased plant growth and—in plants that did not receive nutrient addition—increased leaf nitrogen concentrations compared to uninoculated plants. These effects were partially, but not completely, explained by the duration and severity of pathogen infections. This study highlights the importance of understanding the intricate associations between the order of pathogen arrival, host nutrient availability and host defence to better predict infection outcomes. 
    more » « less