Abstract Water consumption from electricity systems can be large, and it varies greatly by region. As electricity systems change, understanding the implications for water demand is important, given differential water availability. This letter presents regional water consumption and consumptive intensities for the United States electric grid by region using a 2014 base year, based on the 26 regions in the Environmental Protection Agency’s Emissions & Generation Resource Integrated Database. Estimates encompass operational (i.e. not embodied in fixed assets) water consumption from fuel extraction through conversion, calculated as the sum of induced water consumption for processes upstream of the point of generation (PoG) and water consumed at the PoG. Absolute water consumption and consumptive intensity is driven by thermal power plant cooling requirements. Regional consumption intensities vary by roughly a factor of 20. This variability is largely attributed to water consumption upstream of the PoG, particularly evaporation from reservoirs associated with hydroelectricity. Solar and wind generation, which are expected to continue to grow rapidly, consume very little water and could drive lower water consumption over time. As the electricity grid continues to change in response to policy, economic, and climatic drivers, understanding potential impacts on local water resources can inform changes.
more »
« less
Spatially and Temporally Detailed Water and Carbon Footprints of U.S. Electricity Generation and Use
Abstract Electricity generation in the United States entails significant water usage and greenhouse gas emissions. However, accurately estimating these impacts is complex due to the intricate nature of the electric grid and the dynamic electricity mix. Existing methods to estimate the environmental consequences of electricity use often generalize across large regions, neglecting spatial and temporal variations in water usage and emissions. Consequently, electric grid dynamics, such as temporal fluctuations in renewable energy resources, are often overlooked in efforts to mitigate environmental impacts. The U.S. Department of Energy (DOE) has initiated the development of resilient energyshed management systems, requiring detailed information on the local electricity mix and its environmental impacts. This study supports DOE's goal by incorporating geographic and temporal variations in the electricity mix of the local electric grid to better understand the environmental impacts of electricity end users. We offer hourly estimates of the U.S. electricity mix, detailing fuel types, water withdrawal intensity, and water consumption intensity for each grid balancing authority through our publicly accessible tool, the Water Integrated Mapping of Power and Carbon Tracker (Water IMPACT). While our primary focus is on evaluating water intensity factors, our dataset and programming scripts for historical and real‐time analysis also include evaluations of carbon dioxide (equivalence) intensity within the same modeling framework. This integrated approach offers a comprehensive understanding of the environmental footprint associated with electricity generation and use, enabling informed decision‐making to effectively reduce Scope 2 water usage and emissions.
more »
« less
- Award ID(s):
- 2144169
- PAR ID:
- 10576968
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 60
- Issue:
- 12
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Major innovations in computing have been driven by scaling up computing infrastructure, while aggressively optimizing operating costs. The result is a network of worldwide datacenters that consume a large amount of energy, mostly in an energy-efficient manner. Since the electric grid powering these datacenters provided a simple and opaque abstraction of an unlimited and reliable power supply, the computing industry remained largely oblivious to the carbon intensity of the electricity it uses. Much like the rest of the society, it generally treated the carbon intensity ofthe electricity as constant, which was mostly true fora fossil fuel-driven grid. As a result, the cost-driven objective of increasing energy-efficiency - by doing more work per unit of energy - has generally been viewed as the most carbon-efficient approach. However, as the electric grid is increasingly powered by clean energy and is exposing its time-varying carbon intensity, the most energy-efficient operation is no longer necessarily the most carbon-efficient operation. There has been a recent focus on exploiting the flexibility of computing's workloads-along temporal, spatial,and resource dimensions-to reduce carbon emissions,which comes at the cost ofeither perfor- mance or energy efficiency. In this paper, we discuss the trade-offs between energy efficiency and carbon efficiency in exploiting com- puting's flexibility and show that blindly optimizing for energy efficiency is not always the right approach.more » « less
-
Abstract The energy demands from data centers contribute greatly to water scarcity footprint and carbon emissions. Understanding the use of on-site renewable power generation is an important step to gain insight into making data centers more sustainable. This novel study examines the impact of on-site solar or wind energy on data center water scarcity usage effectiveness (WSUE) and carbon usage effectiveness (CUE) at a U.S. county scale for a given data center size, water consumption level, and energy efficiency. The analysis uncovers combinations of specific metrics associated with grid-based carbon emissions and water scarcity footprint that enable predictions of the improvements anticipated when implementing on-site solar or wind energy. The implementation of on-site renewables has the most benefit in reducing carbon footprint in areas with high existing grid-based emissions such as the western side of the Appalachian Mountains (e.g., central and eastern Kentucky). The largest benefit in reducing water scarcity footprint is generally seen in counties with low water scarcity compared to adjacent areas (e.g., northern California).more » « less
-
Abstract Vehicle electrification is a common climate change mitigation strategy, with policymakers invoking co‐beneficial reductions in carbon dioxide (CO2) and air pollutant emissions. However, while previous studies of U.S. electric vehicle (EV) adoption consistently predict CO2mitigation benefits, air quality outcomes are equivocal and depend on policies assessed and experimental parameters. We analyze climate and health co‐benefits and trade‐offs of six U.S. EV adoption scenarios: 25% or 75% replacement of conventional internal combustion engine vehicles, each under three different EV‐charging energy generation scenarios. We transfer emissions from tailpipe to power generation plant, simulate interactions of atmospheric chemistry and meteorology using the GFDL‐AM4 chemistry climate model, and assess health consequences and uncertainties using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program Community Edition (BenMAP‐CE). We find that 25% U.S. EV adoption, with added energy demand sourced from the present‐day electric grid, annually results in a ~242 M ton reduction in CO2emissions, 437 deaths avoided due to PM2.5reductions (95% CI: 295, 578), and 98 deaths avoided due to lesser ozone formation (95% CI: 33, 162). Despite some regions experiencing adverse health outcomes, ~$16.8B in damages avoided are predicted. Peak CO2reductions and health benefits occur with 75% EV adoption and increased emission‐free energy sources (~$70B in damages avoided). When charging‐electricity from aggressive EV adoption is combustion‐only, adverse health outcomes increase substantially, highlighting the importance of low‐to‐zero emission power generation for greater realization of health co‐benefits. Our results provide a more nuanced understanding of the transportation sector's climate change mitigation‐health impact relationship.more » « less
-
The ever-increasing demand for energy is resulting in considerable carbon emissions from the electricity grid. In recent years, there has been growing attention on demand-side optimizations to reduce carbon emissions from electricity usage. A vital component of these optimizations is short-term forecasting of the carbon intensity of the grid-supplied electricity. Many recent forecasting techniques focus on day-ahead forecasts, but obtaining such forecasts for longer periods, such as multiple days, while useful, has not gotten much attention. In this paper, we present CarbonCast, a machine-learning-based hierarchical approach that provides multi-day forecasts of the grid's carbon intensity. CarbonCast uses neural networks to first generate production forecasts for all the electricity-generating sources. It then uses a hybrid CNN-LSTM approach to combine these first-tier forecasts with historical carbon intensity data and weather forecasts to generate a carbon intensity forecast for up to four days. Our results show that such a hierarchical design improves the robustness of the predictions against the uncertainty associated with a longer multi-day forecasting period. We analyze which factors most influence the carbon intensity forecasts of any region with a specific mixture of electricity-generating sources and also show that accurate source production forecasts are vital in obtaining precise carbon intensity forecasts. CarbonCast's 4-day forecasts have a MAPE of 3.42--19.95% across 13 geographically distributed regions while outperforming state-of-the-art methods. Importantly, CarbonCast is the first open-sourced tool for multi-day carbon intensity forecasts where the code and data are freely available to the research community.more » « less
An official website of the United States government
