skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A regional assessment of the water embedded in the US electricity system
Abstract Water consumption from electricity systems can be large, and it varies greatly by region. As electricity systems change, understanding the implications for water demand is important, given differential water availability. This letter presents regional water consumption and consumptive intensities for the United States electric grid by region using a 2014 base year, based on the 26 regions in the Environmental Protection Agency’s Emissions & Generation Resource Integrated Database. Estimates encompass operational (i.e. not embodied in fixed assets) water consumption from fuel extraction through conversion, calculated as the sum of induced water consumption for processes upstream of the point of generation (PoG) and water consumed at the PoG. Absolute water consumption and consumptive intensity is driven by thermal power plant cooling requirements. Regional consumption intensities vary by roughly a factor of 20. This variability is largely attributed to water consumption upstream of the PoG, particularly evaporation from reservoirs associated with hydroelectricity. Solar and wind generation, which are expected to continue to grow rapidly, consume very little water and could drive lower water consumption over time. As the electricity grid continues to change in response to policy, economic, and climatic drivers, understanding potential impacts on local water resources can inform changes.  more » « less
Award ID(s):
1632945
PAR ID:
10305347
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
14
Issue:
8
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 084014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There are water consequences across every life cycle stage of coal‐fired electricity consumption, from production and processing to combustion, which have not been studied with regional specificity. There is often a spatial decoupling between where coal is produced and processed versus where it is combusted for power generation, complicating any analysis to estimate the life cycle water implications of electricity consumption. Furthermore, electricity generated by coal‐fired power plants can be consumed within its own balancing authority or exported to another balancing authority. This analysis spatially resolves the water consumed and water withdrawn for coal mining, coal preparation, and power plant cooling from 1) where the coal is mined to where the coal is burned for power production and 2) where the electricity is generated to where the electricity is consumed. Although the largest portion of coal consumed came from the Northern Great Plains province, coal from this region consumes the least amount of water for mining and preparation compared with other provinces. Water withdrawals for cooling power plants within each balancing authority are driven by cooling technology. Due to the interconnected grid, there can be differences between attributing water footprint at the producer level versus the consumer level. 
    more » « less
  2. Abstract High fractions of variable renewable electricity generation have challenged grid management within the balancing authority overseen by the California’s Independent System Operator (CAISO). In the early evening, solar resources tend to diminish as the system approaches peak demand, putting pressure on fast-responding, emissions-intensive natural gas generators. While residential precooling, a strategy intended to shift the timing of air-conditioning usage from peak-demand periods to cheaper off-peak periods, has been touted in the literature as being effective for reducing peak electricity usage and costs, we explore its impact on CO2emissions in regional grids like CAISO that have large disparities in their daytime versus nighttime emissions intensities. Here we use EnergyPlus to simulate precooling in a typical U.S. single-family home in California climate zone 9 to quantify the impact of precooling on peak electricity usage, CO2emissions, and residential utility costs. We find that replacing a constant-setpoint cooling schedule with a precooling schedule can reduce peak period electricity consumption by 57% and residential electricity costs by nearly 13%, while also reducing CO2emissions by 3.5%. These results suggest the traditional benefits of precooling can be achieved with an additional benefit of reducing CO2emissions in grids with high daytime renewable energy penetrations. 
    more » « less
  3. Abstract Water consumed by power plants is transferred virtually from producers to consumers on the electric grid. This network of virtual transfers varies spatially and temporally on a sub-annual scale. In this study, we focused on cooling water consumed by thermoelectric power plants and water evaporated from hydropower reservoirs. We analyzed blue and grey virtual water flows between balancing authorities in the United States electric grid from 2016 to 2021. Transfers were calculated using thermoelectric water consumption volumes reported in Form EIA-923, power plant data from Form EIA-860, water consumption factors from literature, and electricity transfer data from Form EIA-930. The results indicate that virtual water transfers follow seasonal trends. Virtual blue water transfers are dominated by evaporation from hydropower reservoirs in high evaporation regions and peak around November. Virtual grey watertransfers reach a maximum peak during the summer months and a smaller peak during the winter. Notable virtual blue water transfers occur between Arizona and California as well as surrounding regions in the Southwest. Virtual grey water transfers are greatest in the Eastern United States where older, once-through cooling systems are still in operation. Understanding the spatial and temporal transfer of water resources has important policy, water management, and equity implications for understanding burden shifts between regions. 
    more » « less
  4. Abstract Although hydropower produces a relatively small portion of the electricity we use in the United States, it is a flexible and dispatchable resource that serves various critical functions for managing the electricity grid. Climate-induced changes to water availability will affect future hydropower production, and such changes could impact how the areas where the supply and demand of electricity are balanced, called balancing authority areas, are able to meet decarbonization goals. We calculate hydroclimate risk to hydropower at the balancing authority scale, which is previously underexplored in the literature and has real implications for decarbonization and resilience-building. Our results show that, by 2050, most balancing authority areas could experience significant changes in water availability in areas where they have hydropower. Balancing areas facing the greatest changes are located in diverse geographic areas, not just the Western and Northwestern United States, and vary in hydropower generation capacity. The range of projected changes experienced within each balancing area could exacerbate or offset existing hydropower generation deficits. As power producers and managers undertake increasing regional cooperation to account for introducing more variable renewable energy into the grid, analysis of risk at this regional scale will become increasingly salient. 
    more » « less
  5. Abstract Reducing energy consumption for urban water management may yield economic and environmental benefits. Few studies provide comprehensive assessments of energy needs for urban water sectors that include both utility operations and household use. Here, we evaluate the energy needs for urban water management in metropolitan Los Angeles (LA) County. Using planning scenarios that include both water conservation and alternative supply options, we estimate energy requirements of water imports, groundwater pumping, distribution in pipes, water and wastewater treatment, and residential water heating across more than one hundred regional water agencies covering over 9 million people. Results show that combining water conservation with alternative local supplies such as stormwater capture and water reuse (nonpotable or indirect potable) can reduce the energy consumption and intensity of water management in LA. Further advanced water treatment for direct potable reuse could increase energy needs. In aggregate, water heating represents a major source of regional energy consumption. The heating factor associated with grid-supplied electricity drives the relative contribution of energy-for-water by utilities and households. For most scenarios of grid operations, energy for household water heating significantly outweighs utility energy consumption. The study demonstrates how publicly available and detailed data for energy and water use supports sustainability planning. The method is applicable to cities everywhere. 
    more » « less