Abstract The development of an organic optical glass, termed, disulfide glass (DSG), is reported as a new polymer for commodity plastic optics and thin film photonic applications. This low‐cost thermoset polymer possesses excellent transparency across the visible and infrared spectrum comparable to the best optical plastic to date, poly(methyl methacrylate), while having superior refractive index (n≈ 1.6). DSG can be fabricated into defect‐free, thick optical glass by bulk addition polymerization of two commodity monomers (sulfur monochloride, 1,3,5‐triallyl isocyanurate) via a new polymerization, sulfenyl chloride inverse vulcanization. The robust mechanical properties and optical clarity of DSG enable fabrication of precision optics (lenses, prisms) via diamond turn machining to demonstrate the manufacturability of DSG for commodity plastic optics. Finally, the synthetic modularity of DSG is demonstrated to form solution processable forms for the fabrication of thin film polymer photonic devices, negative tone polymer photoresists, and micropatterned arrays.
more »
« less
Photopolymer Resins from Sulfenyl Chloride Commodity Chemicals for Plastic Optics, Photopatterning and 3D‐Printing
Abstract The development of a low‐cost photopolymer resin to fabricate optical glass of high refractive index for plastic optics is reported. This new free radically polymerizable photopolymer resin, termed, disulfide methacrylate resin (DSMR) is synthesized by the direct addition of allyl methacrylate to a commodity sulfur petrochemical, sulfur monochloride (S2Cl2). The rapid rates of free radical photopolymerization confer significant advantages in preparing high‐quality, bulk optical glass. The low‐cost, optical glass produced from this photopolymer possesses a desirable combination of high refractive index (n ≈ 1.57–1.59), low birefringence (Δn < 10−4), high glass transition values (Tg ≈ 100 °C), along with optical transparency rivaling, or exceeding that of poly(methyl methacrylate) (PMMA) as indicated by very low optical absorption coefficients (α < 0.05 cm−1at 1310 nm) measured for thick glass DSMR photopolymer samples (diameter (D) = 25 mm; thickness = 1–30 mm). The versatile manufacturability of DSMR photopolymers for both molding and diamond turn machining methods is demonstrated to prepare precision optics and nano‐micropatterned arrays. Finally, large‐scale 3D printing vat photopolymerization of DSMR using high‐area rapid printing digital light processing additive manufacturing is demonstrated.
more »
« less
- Award ID(s):
- 2201155
- PAR ID:
- 10577027
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 37
- Issue:
- 14
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Though 3D printing shows potential in fabricating complex optical components rapidly, its poor surface quality and dimensional accuracy render it unqualified for industrial optics applications. The layer steps in the building direction and the pixelated steps on each layer's contour result in inevitable microscale defects on the 3D‐printed surface, far away from the nanoscale roughness required for optics. This paper reports a customized vat photopolymerization‐based lens printing process, integrating unfocused image projection and precision spin coating to solve lateral and vertical stair‐stepping defects. A precision aspherical lens with less than 1 nm surface roughness and 1 µm profile accuracy is demonstrated. The 3D‐printed convex lens achieves a maximum MTF resolution of 347.7 lp mm−1. A mathematical model is established to predict and control the spin coating process on 3D‐printed surfaces precisely. Leveraging this low‐cost yet highly robust and repeatable 3D printing process, the precision fabrication of multi‐scale spherical, aspherical, and axicon lenses are showcased with sizes ranging from 3 to 70 mm using high clear photocuring resins. Additionally, molds are also printed to form multi‐scale PDMS‐based lenses.more » « less
-
Abstract Digital maskless lithography is gaining popularity due to its unique ability to quickly fabricate high-resolution parts without the use of physical masks. By implementing controlled grayscaling and exposure control, it has the potential to replace conventional lithography altogether. However, despite the existence of a theoretical foundation for photopolymerization, observing the voxel growth process in situ is a significant challenge. This difficulty can be attributed to several factors, including the microscopic size of the parts, the low refractive index difference between cured and uncured resin, and the rapid rate of photopolymerization once it crosses a certain threshold. As such, there is a pressing need for a system that can address these issues. To tackle these challenges, the paper proposes a modified Schlieren-based observation system that utilizes confocal magnifying optics to create a virtual screen at the camera's focal plane. This system allows for the visualization of the minute changes in refractive indices made visible by the use of Schlieren optics, specifically the deflection of light by the changing density-induced refractive index gradient. The use of focusing optics provides the system with the flexibility needed to position the virtual screen and implement optical magnification. The researchers employed single-shot binary images with different pixel numbers to fabricate voxels and examine the various factors affecting voxel shape, including chemical composition and energy input. The observed results were then compared against simulations based on Beer–Lambert's law, photopolymerization curve, and Gaussian beam propagation theory. The physical experimental results validated the effectiveness of the proposed observation system. The paper also briefly discusses the application of this system in fabricating microlenses and its advantages over theoretical model-based profile predictions.more » « less
-
Abstract 3D printing of optics has gained significant attention in optical industry, but most of the research has been focused on organic polymers. In spite of recent progress in 3D printing glass, 3D printing of precision glass optics for imaging applications still faces challenges from shrinkage during printing and thermal processing, and from inadequate surface shape and quality to meet the requirements for imaging applications. This paper reports a new liquid silica resin (LSR) with higher curing speed, better mechanical properties, lower sintering temperature, and reduced shrinkage, as well as the printing process for high‐precision glass optics for imaging applications. It is demonstrated that the proposed material and printing process can print almost all types of optical surfaces, including flat, spherical, aspherical, freeform, and discontinuous surfaces, with accurate surface shape and high surface quality for imaging applications. It is also demonstrated that the proposed method can print complex optical systems with multiple optical elements, completely removing the time‐consuming and error‐prone alignment process. Most importantly, the proposed printing method is able to print optical systems with active moving elements, significantly improving system flexibility and functionality. The printing method will enable the much‐needed transformational manufacturing of complex freeform glass optics that are currently inaccessible with conventional processes.more » « less
-
Abstract An acoustic liquefaction approach to enhance the flow of yield stress fluids during Digital Light Processing (DLP)‐based 3D printing is reported. This enhanced flow enables processing of ultrahigh‐viscosity resins (μapp > 3700 Pa s at shear rates = 0.01 s–1) based on silica particles in a silicone photopolymer. Numerical simulations of the acousto–mechanical coupling in the DLP resin feed system at different agitation frequencies predict local resin flow velocities exceeding 100 mm s–1at acoustic transduction frequencies of 110 s–1. Under these conditions, highly loaded particle suspensions (weight fractions, ϕ = 0.23) can be printed successfully in complex geometries. Such mechanically reinforced composites possess a tensile toughness 2000% greater than the neat photopolymer. Beyond an increase in processible viscosities, acoustophoretic liquefaction DLP (AL‐DLP) creates a transient reduction in apparent viscosity that promotes resin recirculation and decreases viscous adhesion. As a result, acoustophoretic liquefaction Digital Light Processing (AL‐DLP) improves the printed feature resolution by more than 25%, increases printable object sizes by over 50 times, and can build parts >3 × faster when compared to conventional methodologies.more » « less
An official website of the United States government
