skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Enhanced Schlieren System for In Situ Observation of Dynamic Light–Resin Interactions in Projection-Based Stereolithography Process
Abstract Digital maskless lithography is gaining popularity due to its unique ability to quickly fabricate high-resolution parts without the use of physical masks. By implementing controlled grayscaling and exposure control, it has the potential to replace conventional lithography altogether. However, despite the existence of a theoretical foundation for photopolymerization, observing the voxel growth process in situ is a significant challenge. This difficulty can be attributed to several factors, including the microscopic size of the parts, the low refractive index difference between cured and uncured resin, and the rapid rate of photopolymerization once it crosses a certain threshold. As such, there is a pressing need for a system that can address these issues. To tackle these challenges, the paper proposes a modified Schlieren-based observation system that utilizes confocal magnifying optics to create a virtual screen at the camera's focal plane. This system allows for the visualization of the minute changes in refractive indices made visible by the use of Schlieren optics, specifically the deflection of light by the changing density-induced refractive index gradient. The use of focusing optics provides the system with the flexibility needed to position the virtual screen and implement optical magnification. The researchers employed single-shot binary images with different pixel numbers to fabricate voxels and examine the various factors affecting voxel shape, including chemical composition and energy input. The observed results were then compared against simulations based on Beer–Lambert's law, photopolymerization curve, and Gaussian beam propagation theory. The physical experimental results validated the effectiveness of the proposed observation system. The paper also briefly discusses the application of this system in fabricating microlenses and its advantages over theoretical model-based profile predictions.  more » « less
Award ID(s):
2111056
PAR ID:
10450289
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
145
Issue:
8
ISSN:
1087-1357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The development of a low‐cost photopolymer resin to fabricate optical glass of high refractive index for plastic optics is reported. This new free radically polymerizable photopolymer resin, termed, disulfide methacrylate resin (DSMR) is synthesized by the direct addition of allyl methacrylate to a commodity sulfur petrochemical, sulfur monochloride (S2Cl2). The rapid rates of free radical photopolymerization confer significant advantages in preparing high‐quality, bulk optical glass. The low‐cost, optical glass produced from this photopolymer possesses a desirable combination of high refractive index (n ≈ 1.57–1.59), low birefringence (Δn < 10−4), high glass transition values (Tg ≈ 100 °C), along with optical transparency rivaling, or exceeding that of poly(methyl methacrylate) (PMMA) as indicated by very low optical absorption coefficients (α < 0.05 cm−1at 1310 nm) measured for thick glass DSMR photopolymer samples (diameter (D) = 25 mm; thickness = 1–30 mm). The versatile manufacturability of DSMR photopolymers for both molding and diamond turn machining methods is demonstrated to prepare precision optics and nano‐micropatterned arrays. Finally, large‐scale 3D printing vat photopolymerization of DSMR using high‐area rapid printing digital light processing additive manufacturing is demonstrated. 
    more » « less
  2. Schlieren imaging is widely adopted in applications where fluid dynamics features are of interest. However, traditional Z-type schlieren systems utilizing on-axis mirrors generally require large system footprints due to the need to use high f-number mirrors. In this context, off-axis parabolic (OAP) mirrors provide an attractive alternative for permitting the use of smaller f-number optics, but well-documented methodologies for designing schlieren systems with OAP mirrors are lacking. The present work outlines a ray-tracing-based workflow applied to the design of a modified Z-type schlieren system utilizing OAP mirrors. The ray-tracing analysis evaluates the defocus and distortion introduced by schlieren optics. The results are used along with system size and illumination efficiency considerations to inform the selection of optimal optical components capable of producing high-quality schlieren images while minimizing the system footprint. As a step-by-step demonstration of the design methodology, an example schlieren system design is presented. The example schlieren design achieved an image resolution of 1.1 lp/mm at 50% contrast, with a 60% reduction in system length compared to traditional Z-type systems with f/8 mirrors; distortion characterizations of the designed schlieren system showed good agreement with ray-tracing predictions, and the distortion can be corrected through image post-processing. The current work provides a systematic approach for the design of compact schlieren systems with OAP mirrors and demonstrates the utility of this underutilized option. 
    more » « less
  3. Abstract Dielectric metasurfaces, composed of planar arrays of subwavelength dielectric structures that collectively mimic the operation of conventional bulk optical elements, have revolutionized the field of optics by their potential in constructing high-efficiency and multi-functional optoelectronic systems on chip. The performance of a dielectric metasurface is largely determined by its constituent material, which is highly desired to have a high refractive index, low optical loss and wide bandgap, and at the same time, be fabrication friendly. Here, we present a new material platform based on tantalum pentoxide (Ta2O5) for implementing high-performance dielectric metasurface optics over the ultraviolet and visible spectral region. This wide-bandgap dielectric, exhibiting a high refractive index exceeding 2.1 and negligible extinction coefficient across a broad spectrum, can be easily deposited over large areas with good quality using straightforward physical vapor deposition, and patterned into high-aspect-ratio subwavelength nanostructures through commonly-available fluorine-gas-based reactive ion etching. We implement a series of high-efficiency ultraviolet and visible metasurfaces with representative light-field modulation functionalities including polarization-independent high-numerical-aperture lensing, spin-selective hologram projection, and vivid structural color generation, and the devices exhibit operational efficiencies up to 80%. Our work overcomes limitations faced by scalability of commonly-employed metasurface dielectrics and their operation into the visible and ultraviolet spectral range, and provides a novel route towards realization of high-performance, robust and foundry-manufacturable metasurface optics. 
    more » « less
  4. Abstract Through years of development, we have successfully demonstrated 3D light field lithography with UV continuous light. We recently combined this approach with femtosecond laser sources as two-photon femtosecond 3D light lithography. It is found that consistent results can happen under limited conditions with this direct combination. Our theoretical analysis reported last year shows that the experimental difficulty can be attributed to digital micro-mirror devices (DMD) and microlens arrays (MLA) used in the current 3D light field projection. Though they can control the propagation directions and interact at designed 3D locations, rays from such a system diverge with respect to the propagation distance. As a result, 3D voxel intensity in the 3D projection changes as a function of the separation distance with respect to the MLA in the 3D projection. To solve this problem, we replace the combination of DMD and MLA with a phase-controlled spatial light modulator. With a lab-developed algorithm, a single femtosecond laser pulse can generate up to a million sub-rays through the phase-controlled spatial light modulator. These sub-rays with a precisely controlled propagation direction can intersect at designed 3D locations as voxels for 3D virtual object constructions. Moreover, these sub-rays have minimum divergence angles to ensure that the voxel intensities are maintained consistently at each 3D location. We also demonstrated that versatile 3D patterns could be generated with two-photon femtosecond 3D light field lithography based on this innovative approach. 
    more » « less
  5. Abstract The development of infrared (IR) plastic optics for infrared thermal imaging, particularly, in the long‐wave IR (LWIR) spectrum (7–14 µm) is an area of growing technological interest due to the potential advantages associated with plastic optics (e.g., moldability and low cost). The development of a new class of optical polymers, chalcogenide‐based inorganic/organic hybrid polymers (CHIPs) derived from the inverse vulcanization of elemental sulfur, has enabled significant improvements in IR transparency due to reduction of IR absorbing organic comonomer units. The vast majority of effort has focused on new chalcogenide hybrid polymer synthesis and optical property improvements (e.g., refractive index, Abbe number, and LWIR transmission); however, fabrication and IR imaging methodology to prepare optical components has not been demonstrated, which remains critical to develop viable IR plastic optics. A new methodology is reported to fabricate optical components and evaluate LWIR imaging performance of this emerging class of optical polymers. New diffractive flat optics with a Fresnel lens design for these materials have been developed, along with a basic LWIR imaging system to evaluate CHIPs for LWIR imaging. This system‐based approach enables correspondence of copolymer structure‐property correlations with LWIR imaging performance, along with demonstration of room temperature LWIR imaging. 
    more » « less