skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stability of Saltwater‐Freshwater Mixing Zones in Beach Aquifers With Geologic Heterogeneity
Abstract Saltwater‐freshwater mixing zones in beach aquifers support biogeochemical reactions that moderate chemical loads in fresh groundwater discharging to marine ecosystems. Existing laboratory and numerical modeling studies have demonstrated that fluid density gradients in the mixing zone can lead to free convection and the formation of density instabilities, or salt fingers, under a range of hydrologic, morphologic, and hydrogeologic conditions. However, salt fingers have rarely been observed in real‐world beach aquifers despite a growing body of field studies investigating intertidal mixing zones. In this study, we used geostatistical methods to generate randomly distributed assemblages of fine and medium sand and incorporated those geologic realizations into variable‐density variably‐saturated flow and salt transport simulations to explore the influence of geologic structure on mixing zone stability in tidally‐influenced beaches. Ensemble‐averaged model results show that geologic heterogeneity inhibits salt finger formation and promotes a stable intertidal mixing zone due to enhanced dispersion. This effect is highest for high degrees of heterogeneity and for more laterally connected geologic architecture. Compared to hydraulically equivalent homogeneous models, sediments with moderate to high heterogeneity produce mixing zones that are on average 19%–29% smaller and 3–10 times more stable due to the absence of the downward convection and seaward movement of salt fingers. The models indicate that geologic heterogeneity may explain the lack of field observations of salt fingers in real‐world intertidal mixing zones. The findings have implications for predicting the onset of free convection in beaches and for understanding intertidal pore water biogeochemistry and chemical fluxes to the ocean.  more » « less
Award ID(s):
1933058
PAR ID:
10577072
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
60
Issue:
8
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This resource contains example model input and output data for Olorunsaye and Heiss (2024). Olorunsaye, O., & Heiss, J. W. (2024). Stability of saltwater‐freshwater mixing zones in beach aquifers with geologic heterogeneity. Water Resources Research, e2023WR036394, 1–22. https://doi.org/10.1029/2023WR036056 
    more » « less
  2. null (Ed.)
    Beach aquifers, located in the subsurface of sandy beaches, are unique ecosystems with steep chemical and physical gradients resulting from the mixing of terrestrial fresh groundwater and saline groundwater from the sea. While work has rapidly progressed to understand the physics and chemistry in this environment, much less is known about the microorganisms present despite the fact that they are responsible for vital biogeochemical processes. This paper presents a review of the current state of knowledge of microbes within beach aquifers and the mechanisms that control the beach aquifer microbiome. We review literature describing the distribution and diversity of microorganisms in the freshwater-saltwater mixing zone of beach aquifers, and identify just 12 papers. We highlight knowledge gaps, as well as future research directions: The understanding of beach aquifer microorganisms is informed primarily by 16S ribosomal RNA gene sequences. Metagenomics and metatranscriptomics have not yet been applied but are promising approaches for elucidating key metabolic and ecological roles of microbes in this environment. Additionally, variability in field sampling and analytical methods restrict comparison of data across studies and geographic locations. Further, documented evidence on the migration of microbes within the beach aquifer is limited. Taking into account the physical transport of microbes through sand by flowing groundwater may be critical for understanding the structure and dynamics of microbial communities. Quantitative measurements of rates of elemental cycling in the context of microbial diversity need further investigation, in order to understand the roles of microbes in mediating biogeochemical fluxes from the beach aquifer to the coastal ocean. Lastly, understanding the current state of beach aquifers in regulating carbon stocks is critical to foster a better understanding of the contribution of the beach aquifer microbiome to global climate models. 
    more » « less
  3. Abstract Future increases in the frequency of tidal flooding due to sea level rise (SLR) are likely to affect pore water salinities in coastal aquifers. In this study, we investigate the impact of increased tidal flooding frequency on salinity and flow dynamics in coastal aquifers using numerical variable‐density variably‐saturated groundwater flow and salt transport models. Short (sub‐daily) and long (decadal) period tides are combined with SLR projections to drive continuous 80‐year models of flow and salt transport. Results show that encroaching intertidal zones lead to both periodic and long‐term vertical salinization of the upper aquifer. Salinization of the upper aquifer due to tidal flooding forces the lower interface seaward, even under SLR. System dynamics are controlled by the interplay between SLR and long period tidal forcing associated with perigean spring tides and the 18.6‐year lunar nodal cycle. Periodic tidal flooding substantially enhances intertidal saltwater‐freshwater mixing, resulting in a 6‐ to 10‐fold expansion of the intertidal saltwater‐freshwater mixing area across SLR scenarios. The onset of the expansion coincides with extreme high water levels resulting from lunar nodal cycling of tidal constituent amplitudes. The findings are the first to demonstrate the combined effects of gradual SLR and short and long period tides on aquifer salinity distributions, and reveal competing influences of SLR on saltwater intrusion. The results are likely to have important implications for coastal ocean chemical fluxes and groundwater resources as tidal flooding intensifies worldwide. 
    more » « less
  4. ABSTRACT Sandy beaches are iconic interfaces that functionally link the ocean with the landviathe flow of organic matter from the sea. These cross‐ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed ‘wrack’, on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source (‘carrion’) for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy‐beach ecosystems (sandy beaches and adjacent surf zones), which typically have littlein situprimary production. We also examine the spatial scaling of the influence of these processes across the broader land‐ and seascape, and identify key gaps in our knowledge to guide future research directions and priorities. Large quantities of detrital kelp and seagrass can flow into sandy‐beach ecosystems, where microbial decomposers and animals process it. The rates of wrack supply and its retention are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the macrophyte taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack breakdown, and these can return to coastal waters in surface flows (swash) and aquifers discharging into the subtidal surf. Beach‐cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi‐aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach‐cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy‐beach ecosystems underpin a range of ecosystem functions and services, they can be at variance with aesthetic perceptions resulting in widespread activities, such as ‘beach cleaning and grooming’. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow‐on effects for food webs and biodiversity. Similarly, future sea‐level rise and increased storm frequency are likely to alter profoundly the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi‐faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach‐cast organic matter on innumerable ocean shores worldwide. 
    more » « less
  5. Hyrenbach, David (Ed.)
    The coastal zone provides foraging opportunities for insular populations of terrestrial mammals, allowing for expanded habitat use, increased dietary breadth, and locally higher population densities. We examined the use of sandy beach resources by the threatened island fox ( Urocyon littoralis ) on the California Channel Islands using scat analysis, surveys of potential prey, beach habitat attributes, and stable isotope analysis. Consumption of beach invertebrates, primarily intertidal talitrid amphipods ( Megalorchestia spp.) by island fox varied with abundance of these prey across sites. Distance-based linear modeling revealed that abundance of giant kelp ( Macrocystis pyrifera ) wrack, rather than beach physical attributes, explained the largest amount of variation in talitrid amphipod abundance and biomass across beaches. δ 13 C and δ 15 N values of fox whisker (vibrissae) segments suggested individualism in diet, with generally low δ 13 C and δ 15 N values of some foxes consistent with specializing on primarily terrestrial foods, contrasting with the higher isotope values of other individuals that suggested a sustained use of sandy beach resources, the importance of which varied over time. Abundant allochthonous marine resources on beaches, including inputs of giant kelp, may expand habitat use and diet breadth of the island fox, increasing population resilience during declines in terrestrial resources associated with climate variability and long-term climate change. 
    more » « less