skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linking Visco‐Elasto‐Plastic Modeling of Recent Slab Deformation to Present‐Day Deep Earthquakes
Abstract Deep earthquakes require the cold temperatures found in sinking lithosphere to store elastic strain. It has also been proposed that sufficiently high rates of deformation are also required, regardless of the failure mechanism. However, this strain‐rate hypothesis is based on generic time‐dependent and visco‐plastic subduction models, positing a challenge for direct comparisons to present‐day earthquake observations. Here, we present a new numerical modeling approach incorporating location‐specific visco‐elasto‐plastic models to facilitate direct comparison with deep earthquake observations. We present a Proof‐of‐Concept Model using a 2D synthetic slab to demonstrate that this novel approach can reproduce stress and strain‐rate patterns and the stress orientations from a fully time‐dependent model. Applying this method to a 2D profile through the Tonga‐Kermadec subduction zone we find that variations in strain‐rate correlate with seismicity rate and regions of stress in the slab exceeding 500 MPa. Elasticity in the slab leads to formation of a clearly defined neutral plane extending into the transition zone and creating a narrow region of down‐dip compression along the top portion of the slab which broadens across the full width of the slab only within the deep transition zone. In addition, assuming that the strain‐rate hypothesis is correct, we show that peaks in strain‐rate, which are associated with bends in the slab, could be used to constrain the slab shape beyond the envelope of seismicity.  more » « less
Award ID(s):
2121800
PAR ID:
10577109
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
130
Issue:
3
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The determination of the temperature in and above the slab in subduction zones, using models where the top of the slab is precisely known, is important to test hypotheses regarding the causes of arc volcanism and intermediate-depth seismicity. While 2D and 3D models can predict the thermal structure with high precision for fixed slab geometries, a number of regions are characterized by relatively large geometrical changes over time. Examples include the flat slab segments in South America that evolved from more steeply dipping geometries to the present day flat slab geometry. We devise, implement, and test a numerical approach to model the thermal evolution of a subduction zone with prescribed changes in slab geometry over time. Our numerical model approximates the subduction zone geometry by employing time dependent deformation of a Bézier spline that is used as the slab interface in a finite element discretization of the Stokes and heat equations. We implement the numerical model using the FEniCS open source finite element suite and describe the means by which we compute approximations of the subduction zone velocity, temperature, and pressure fields. We compute and compare the 3D time evolving numerical model with its 2D analogy at cross-sections for slabs that evolve to the present-day structure of a flat segment of the subducting Nazca plate. 
    more » « less
  2. Abstract Subduction zones host some of Earth's most damaging natural hazards, including megathrust earthquakes and earthquake‐induced tsunamis. A major control on the initiation and rupture characteristics of subduction megathrust earthquakes is how the coupled zone along the subduction interface accumulates elastic strain between events. We present results from observations of slow slip events (SSEs) in Cascadia occurring during the interseismic period downdip of the fully coupled zone, which imply that the orientation of strain accumulation within the coupled zone can vary with depth. Interseismic GPS motions suggest that forces derived from relative plate motions across a shallow, offshore locked plate interface dominate over decadal timescales. Deeper on the plate interface, below the locked (seismogenic) patch, slip during SSEs dominantly occurs in the updip direction, reflecting a dip‐parallel force acting on the slab, such as slab pull. This implies that in subduction zones with obliquely convergent plate motions, the seismogenic zone of the megathrust is loaded by forces acting in two discrete directions, leading to a depth‐varying orientation of strain accumulation on the plate interface. 
    more » « less
  3. null (Ed.)
    Abstract The subducted old and cold Pacific Plate beneath the young Philippine Sea Plate at the Izu‐Bonin trench over the Cenozoic hosts regional deep earthquakes. We investigate slab morphology and stress regimes under different trench motion histories with mantle convection models. Viscosity, temperature, and deviatoric stress are inherently heterogeneous within the slab, which we link to the occurrence of isolated earthquakes. Models expand on previous suggestions that observed slab morphology variations along the Izu‐Bonin subduction zone, exhibited as shallow slab dip angles in the north and steeper dip angles in the south, are mainly due to variations in the rate of trench retreat from the north (where it is fast) to the south (where it is slow). Geodynamic models consistent with the regional plate tectonics, including oceanic plate age, plate convergence rate, and trench motion history, reproduce the seismologically observed principal stress direction and slab morphology. We suggest that the isolated ~680 km deep, 30 May 2015 Mw 7.9 Bonin Islands earthquake, which lies east of the well‐defined Benioff zone and has its principal compressional stress direction oriented toward the tip of the previously defined Benioff zone, can be explained by Pacific slab buckling in response to the slow trench retreat. 
    more » « less
  4. Abstract The nature and cause of deep earthquakes remain enduring unknowns in the field of seismology. We present new models of thermal structures of subducted slabs traced to mantle transition zone depths that permit a detailed comparison between slab pressure/temperature (P/T) paths and hydrated/carbonated mineral phase relations. We find a remarkable correlation between slabs capable of transporting water to transition zone depths in dense hydrous magnesium silicates with slabs that produce seismicity below ∼300‐km depth, primarily between 500 and 700 km. This depth range also coincides with theP/Tconditions at which oceanic crustal lithologies in cold slabs are predicted to intersect the carbonate‐bearing basalt solidus to produce carbonatitic melts. Both forms of fluid evolution are well represented by sublithospheric diamonds whose inclusions record the existence of melts, fluids, or supercritical liquids derived from hydrated or carbonate‐bearing slabs at depths (∼300–700 km) generally coincident with deep‐focus earthquakes. We propose that the hydrous and carbonated fluids released from subducted slabs at these depths lead to fluid‐triggered seismicity, fluid migration, diamond precipitation, and inclusion crystallization. Deep focus earthquake hypocenters could track the general region of deep fluid release, migration, and diamond formation in the mantle. The thermal modeling of slabs in the mantle and the correlation between sublithospheric diamonds, deep focus earthquakes, and slabs at depth demonstrate a deep subduction pathway to the mantle transition zone for carbon and volatiles that bypasses shallower decarbonation and dehydration processes. 
    more » « less
  5. Abstract The 22 July 2020 Mw7.8 Simeonof earthquake was a deep megathrust event that ruptured along the Shumagin segment of the Alaska‐Aleutian subduction zone. This earthquake occurred ∼250 km from a seafloor geodetic GNSS‐Acoustic site IVB1, where we observed a velocity of 3.78 ± 1.15 cm/yr with the down‐going slab prior to the earthquake followed by 0.6 ± 0.7 eastward and −15.5 ± 0.8 cm northward coseismic offset. We computed a slip model of the coseismic rupture using the static offset at IVB1 alongside regional continuous GNSS and strong motion stations. The small static horizontal offset at the site precludes significantly shallower rupture than previously inferred from terrestrial observations, confirming that the Simeonof earthquake was a deep megathrust earthquake. The observed site velocity implies partial locking prior to the earthquake, implying significant shallow strain accumulation such that the small coseismic offset is unlikely to have relieved all of the accumulated strain since the last coseismic rupture. 
    more » « less