Monotonicity testing of Boolean functions on the hypergrid, $$f:[n]^d \to \{0,1\}$$, is a classic topic in property testing. Determining the non-adaptive complexity of this problem is an important open question. For arbitrary $$n$$, [Black-Chakrabarty-Seshadhri, SODA 2020] describe a tester with query complexity $$\widetilde{O}(\varepsilon^{-4/3}d^{5/6})$$. This complexity is independent of $$n$$, but has a suboptimal dependence on $$d$$. Recently, [Braverman-Khot-Kindler-Minzer, ITCS 2023] and [Black-Chakrabarty-Seshadhri, STOC 2023] describe $$\widetilde{O}(\varepsilon^{-2} n^3\sqrt{d})$$ and $$\widetilde{O}(\varepsilon^{-2} n\sqrt{d})$$-query testers, respectively. These testers have an almost optimal dependence on $$d$$, but a suboptimal polynomial dependence on $$n$$. \smallskip In this paper, we describe a non-adaptive, one-sided monotonicity tester with query complexity $$O(\varepsilon^{-2} d^{1/2 + o(1)})$$, \emph{independent} of $$n$$. Up to the $$d^{o(1)}$$-factors, our result resolves the non-adaptive complexity of monotonicity testing for Boolean functions on hypergrids. The independence of $$n$$ yields a non-adaptive, one-sided $$O(\varepsilon^{-2} d^{1/2 + o(1)})$$-query monotonicity tester for Boolean functions $$f:\mathbb{R}^d \to \{0,1\}$$ associated with an arbitrary product measure.
more »
« less
This content will become publicly available on January 12, 2026
Local Lipschitz Filters for Bounded-Range Functions with Applications to Arbitrary Real-Valued Functions
We study local filters for the Lipschitz property of real-valued functions f : V → [0,r], where the Lipschitz property is defined with respect to an arbitrary undirected graph G = (V, E ). We give nearly optimal local Lipschitz filters both with respect to ℓ1-distance and ℓ0-distance. Previous work only considered unbounded- range functions over [n]d. Jha and Raskhodnikova (SICOMP ‘13) gave an algorithm for such functions with lookup complexity exponential in d, which Awasthi et al. (ACM Trans. Comput. Theory) showed was necessary in this setting. We demonstrate that important applications of local Lipschitz filters can be accomplished with filters for functions whose range is bounded in [0,r]. For functions f : [n]d → [0,r], we achieve running time (dr log n )O (log r ) for the ℓ1-respecting filter and dO(r) polylog n for the ℓ0-respecting filter, thus circumventing the lower bound. Our local filters provide a novel Lipschitz extension that can be implemented locally. Furthermore, we show that our algorithms are nearly optimal in terms of the dependence on r for the domain {0,1}d, an important special case of the domain [n]d. In addition, our lower bound resolves an open question of Awasthi et al., removing one of the conditions necessary for their lower bound for general range. We prove our lower bound via a reduction from distribution-free Lipschitz testing and a new technique for proving hardness for adaptive algorithms. Finally, we provide two applications of our local filters to real-valued functions, with no restrictions on the range. In the first application, we use them in conjunction with the Laplace mechanism for differential privacy and noisy binary search to provide mechanisms for privately releasing outputs of black-box functions, even in the presence of malicious clients. In particular, our differentially private mechanism for arbitrary real-valued functions runs in time 2polylog min(r,nd ) and, for honest clients, has accuracy comparable to the Laplace mechanism for Lipschitz functions, up to a factor of O (log min(r,nd )). In the second application, we use our local filters to obtain the first nontrivial tolerant tester for the Lipschitz property. Our tester works for functions of the form f : {0,1}d → ℝ, makes queries, and has tolerance ratio 2.01. Our applications demonstrate that local filters for bounded-range functions can be applied to construct efficient algorithms for arbitrary real-valued functions.
more »
« less
- Award ID(s):
- 2310818
- PAR ID:
- 10577198
- Publisher / Repository:
- Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2025)
- Date Published:
- Page Range / eLocation ID:
- 2881-2907
- Format(s):
- Medium: X
- Location:
- New Orleans, LA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The problem of testing monotonicity for Boolean functions on the hypergrid, $$f:[n]^d \to \{0,1\}$$ is a classic topic in property testing. When $n=2$, the domain is the hypercube. For the hypercube case, a breakthrough result of Khot-Minzer-Safra (FOCS 2015) gave a non-adaptive, one-sided tester making $$\otilde(\eps^{-2}\sqrt{d})$$ queries. Up to polylog $$d$$ and $$\eps$$ factors, this bound matches the $$\widetilde{\Omega}(\sqrt{d})$$-query non-adaptive lower bound (Chen-De-Servedio-Tan (STOC 2015), Chen-Waingarten-Xie (STOC 2017)). For any $n > 2$, the optimal non-adaptive complexity was unknown. A previous result of the authors achieves a $$\otilde(d^{5/6})$$-query upper bound (SODA 2020), quite far from the $$\sqrt{d}$$ bound for the hypercube. In this paper, we resolve the non-adaptive complexity of monotonicity testing for all constant $$n$$, up to $$\poly(\eps^{-1}\log d)$$ factors. Specifically, we give a non-adaptive, one-sided monotonicity tester making $$\otilde(\eps^{-2}n\sqrt{d})$$ queries. From a technical standpoint, we prove new directed isoperimetric theorems over the hypergrid $[n]^d$. These results generalize the celebrated directed Talagrand inequalities that were only known for the hypercube.more » « less
-
We study the question of testing structured properties (classes) of discrete distributions. Specifically, given sample access to an arbitrary distribution D over [n] and a property P, the goal is to distinguish between D ∈ P and ℓ1(D, P) > ε. We develop a general algorithm for this question, which applies to a large range of “shape-constrained” properties, including monotone, log-concave, t-modal, piecewise-polynomial, and Poisson Binomial distributions. Moreover, for all cases considered, our algorithm has near-optimal sample complexity with regard to the domain size and is computationally efficient. For most of these classes, we provide the first non-trivial tester in the literature. In addition, we also describe a generic method to prove lower bounds for this problem, and use it to show our upper bounds are nearly tight. Finally, we extend some of our techniques to tolerant testing, deriving nearly–tight upper and lower bounds for the corresponding questions.more » « less
-
Guruswami, Venkatesan (Ed.)Inspired by the classic problem of Boolean function monotonicity testing, we investigate the testability of other well-studied properties of combinatorial finite set systems, specifically intersecting families and union-closed families. A function f: {0,1}ⁿ → {0,1} is intersecting (respectively, union-closed) if its set of satisfying assignments corresponds to an intersecting family (respectively, a union-closed family) of subsets of [n]. Our main results are that - in sharp contrast with the property of being a monotone set system - the property of being an intersecting set system, and the property of being a union-closed set system, both turn out to be information-theoretically difficult to test. We show that: - For ε ≥ Ω(1/√n), any non-adaptive two-sided ε-tester for intersectingness must make 2^{Ω(n^{1/4}/√{ε})} queries. We also give a 2^{Ω(√{n log(1/ε)})}-query lower bound for non-adaptive one-sided ε-testers for intersectingness. - For ε ≥ 1/2^{Ω(n^{0.49})}, any non-adaptive two-sided ε-tester for union-closedness must make n^{Ω(log(1/ε))} queries. Thus, neither intersectingness nor union-closedness shares the poly(n,1/ε)-query non-adaptive testability that is enjoyed by monotonicity. To complement our lower bounds, we also give a simple poly(n^{√{nlog(1/ε)}},1/ε)-query, one-sided, non-adaptive algorithm for ε-testing each of these properties (intersectingness and union-closedness). We thus achieve nearly tight upper and lower bounds for two-sided testing of intersectingness when ε = Θ(1/√n), and for one-sided testing of intersectingness when ε = Θ(1).more » « less
-
null (Ed.)A new network with super-approximation power is introduced. This network is built with Floor (⌊x⌋) or ReLU (max{0,x}) activation function in each neuron; hence, we call such networks Floor-ReLU networks. For any hyperparameters N∈N+ and L∈N+, we show that Floor-ReLU networks with width max{d,5N+13} and depth 64dL+3 can uniformly approximate a Hölder function f on [0,1]d with an approximation error 3λdα/2N-αL, where α∈(0,1] and λ are the Hölder order and constant, respectively. More generally for an arbitrary continuous function f on [0,1]d with a modulus of continuity ωf(·), the constructive approximation rate is ωf(dN-L)+2ωf(d)N-L. As a consequence, this new class of networks overcomes the curse of dimensionality in approximation power when the variation of ωf(r) as r→0 is moderate (e.g., ωf(r)≲rα for Hölder continuous functions), since the major term to be considered in our approximation rate is essentially d times a function of N and L independent of d within the modulus of continuity.more » « less