skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 19, 2026

Title: Continual Learning Using Only Large Language Model Prompting
We introduce CLOB, a novel continual learning (CL) paradigm wherein a large language model (LLM) is regarded as a black box. Learning is done incrementally via only verbal prompting. CLOB does not fine-tune any part of the LLM or add any trainable parameters to it. It is particularly suitable for LLMs that are accessible via APIs. We also propose a new CL technique, called CIS, based on incremental summarization that also overcomes the LLM’s input length limit. Experiments show CIS outperforms baselines by a very large margin.  more » « less
Award ID(s):
2229876
PAR ID:
10577384
Author(s) / Creator(s):
; ;
Publisher / Repository:
The 31st International Conference on Computational Linguistics (COLING-2025)
Date Published:
Format(s):
Medium: X
Location:
Abu Dhabi, UAE
Sponsoring Org:
National Science Foundation
More Like this
  1. Existing continual learning (CL) methods mainly rely on fine-tuning or adapting large language mod- els (LLMs). They still suffer from catastrophic for- getting (CF). Little work has been done to exploit in-context learning (ICL) to leverage the extensive knowledge within LLMs for CL without updating any parameters. However, incrementally learning each new task in ICL necessitates adding training examples from each class of the task to the prompt, which hampers scalability as the prompt length in- creases. This issue not only leads to excessively long prompts that exceed the input token limit of the underlying LLM but also degrades the model’s performance due to the overextended context. To address this, we introduce InCA, a novel approach that integrates an external continual learner (ECL) with ICL to enable scalable CL without CF. The ECL is built incrementally to pre-select a small subset of likely classes for each test instance. By restricting the ICL prompt to only these selected classes, InCA prevents prompt lengths from becom- ing excessively long, while maintaining high per- formance. Experimental results demonstrate that InCA significantly outperforms existing CL base- lines, achieving substantial performance gains. 
    more » « less
  2. This paper studies continual learning (CL) of a sequence of aspect sentiment classification (ASC) tasks. Although some CL techniques have been proposed for document sentiment classification, we are not aware of any CL work on ASC. A CL system that incrementally learns a sequence of ASC tasks should address the following two issues: (1) transfer knowledge learned from previous tasks to the new task to help it learn a better model, and (2) maintain the performance of the models for previous tasks so that they are not forgotten. This paper proposes a novel capsule network based model called B-CL to address these issues. B-CL markedly improves the ASC performance on both the new task and the old tasks via forward and backward knowledge transfer. The effectiveness of B-CL is demonstrated through extensive experiments. 
    more » « less
  3. In this work, we theoretically investigate why large language model (LLM)-empowered agents can solve decision-making problems in the physical world. We consider a hierarchical reinforcement learning (RL) model where the LLM Planner handles high-level task planning and the Actor performs low-level execution. Within this model, the LLM Planner operates in a partially observable Markov decision process (POMDP), iteratively generating language-based subgoals through prompting. Assuming appropriate pretraining data, we prove that the pretrained LLM Planner effectively conducts Bayesian aggregated imitation learning (BAIL) via in-context learning. We also demonstrate the need for exploration beyond the subgoals produced by BAIL, showing that naively executing these subgoals results in linear regret. To address this, we propose an ε-greedy exploration strategy for BAIL, which we prove achieves sublinear regret when pretraining error is low. Finally, we extend our theoretical framework to cases where the LLM Planner acts as a world model to infer the environment’s transition model and to multi-agent settings, facilitating coordination among multiple Actors. 
    more » « less
  4. The rising computational and energy demands of deep learning, particularly in large-scale architectures such as foundation models and large language models (LLMs), pose significant challenges to sustainability. Traditional gradient-based training methods are inefficient, requiring numerous iterative updates and high power consumption. To address these limitations, we propose a hybrid framework that combines hierarchical decomposition with FPGA-based direct equation solving and incremental learning. Our method divides the neural network into two functional tiers: lower layers are optimized via single-step equation solving on FPGAs for efficient and parallelizable feature extraction, while higher layers employ adaptive incremental learning to support continual updates without full retraining. Building upon this foundation, we introduce the Compound LLM framework, which explicitly deploys LLM modules across both hierarchy levels. The lower-level LLM handles reusable representation learning with minimal energy overhead, while the upper-level LLM performs adaptive decision making through energy-aware updates. This integrated design enhances scalability, reduces redundant computation, and aligns with the principles of sustainable AI. Theoretical analysis and architectural insights demonstrate that our method reduces computational costs significantly while preserving high model performance, making it well-suited for edge deployment and real-time adaptation in energy-constrained environments. 
    more » « less
  5. In this talk, we have presented the use of LLM to study the embodied learning. We have discovered that the use of LLM is really effective to summarize the videos of embodied learning and conventional learning. LLM is also very effective in summarize the sentiment of the user comments of the two different videos. Correlation between the user comments and video content was also made. It is discovered that the use of the embodied learning is rather effective to engage learners in learning robotics 
    more » « less