Abstract Faraday rotation spectroscopy and absorption spectroscopy are performed simultaneously in a dual comb spectroscopy arrangement with quantum cascade laser combs operating at ∼8μm. The system uses free-running laser combs that provide ∼70 cm−1spectral coverage and ∼2 MHz spectral resolution. Detection of NO2in an equilibrium mixture with N2O4and N2O is used to demonstrate selective measurements of paramagnetic NO2in the presence of spectrally interfering diamagnetic species.
more »
« less
Digitally controlled optical sampling in dual-comb spectroscopy
Dual-comb spectroscopy (DCS) is a powerful method for the characterization of materials. It enables the rapid measurements of broad absorption spectra with high spectral resolution. However, dual-comb spectroscopy has a low duty cycle especially when used to study semiconductor materials whose excited states’ dephasing rates are much shorter than the spacing between the comb pulses. When DCS is applied to these systems, a vast majority of energy and acquisition time is wasted. Here, we demonstrate a simple approach that can aid efforts to solve this issue. In our approach, we use two frequency combs that have the same repetition frequencies and we digitally control the relative locking phase between the combs. This allows us to control the delay with very high precision and take the data rapidly and continuously only in the region where the signal is non-zero. We demonstrate the concept on a Neodymium-doped yttrium orthovanadate (Nd:YVO4) sample. We show that, we could scan the delay between the signal and local oscillator comb pulses up to ∼ 6 ps in under 150 µs. We compare an absorption spectrum of (Nd:YVO4) obtained using our approach to an absorption spectrum obtained using conventional DCS and they are in good agreement. This approach now makes DCS relevant for a wide range of materials.
more »
« less
- Award ID(s):
- 2235597
- PAR ID:
- 10577477
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Continuum
- Volume:
- 4
- Issue:
- 3
- ISSN:
- 2770-0208
- Format(s):
- Medium: X Size: Article No. 571
- Size(s):
- Article No. 571
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mid-infrared (MIR) spectrometers are invaluable tools for molecular fingerprinting and hyper-spectral imaging. Among the available spectroscopic approaches, GHz MIR dual-comb absorption spectrometers have the potential to simultaneously combine the high-speed, high spectral resolution, and broad optical bandwidth needed to accurately study complex, transient events in chemistry, combustion, and microscopy. However, such a spectrometer has not yet been demonstrated due to the lack of GHz MIR frequency combs with broad and full spectral coverage. Here, we introduce the first broadband MIR frequency comb laser platform at 1 GHz repetition rate that achieves spectral coverage from 3 to 13 {\mu}m. This frequency comb is based on a commercially available 1.56 {\mu}m mode-locked laser, robust all-fiber Er amplifiers and intra-pulse difference frequency generation (IP-DFG) of few-cycle pulses in \c{hi}(2) nonlinear crystals. When used in a dual comb spectroscopy (DCS) configuration, this source will simultaneously enable measurements with {\mu}s time resolution, 1 GHz (0.03 cm-1) spectral point spacing and a full bandwidth of >5 THz (>166 cm-1) anywhere within the MIR atmospheric windows. This represents a unique spectroscopic resource for characterizing fast and non-repetitive events that are currently inaccessible with other sources.more » « less
-
Abstract Mid-infrared (MIR) spectrometers are invaluable tools for molecular fingerprinting and hyper-spectral imaging. Among the available spectroscopic approaches, GHz MIR dual-comb absorption spectrometers have the potential to simultaneously combine the high-speed, high spectral resolution, and broad optical bandwidth needed to accurately study complex, transient events in chemistry, combustion, and microscopy. However, such a spectrometer has not yet been demonstrated due to the lack of GHz MIR frequency combs with broad and full spectral coverage. Here, we introduce the first broadband MIR frequency comb laser platform at 1 GHz repetition rate that achieves spectral coverage from 3 to 13 µm. This frequency comb is based on a commercially available 1.56 µm mode-locked laser, robust all-fiber Er amplifiers and intra-pulse difference frequency generation (IP-DFG) of few-cycle pulses inχ(2)nonlinear crystals. When used in a dual comb spectroscopy (DCS) configuration, this source will simultaneously enable measurements with μs time resolution, 1 GHz (0.03 cm−1) spectral point spacing and a full bandwidth of >5 THz (>166 cm−1) anywhere within the MIR atmospheric windows. This represents a unique spectroscopic resource for characterizing fast and non-repetitive events that are currently inaccessible with other sources.more » « less
-
Dual-comb spectroscopy in the ultraviolet (UV) and visible would enable broad bandwidth electronic spectroscopy with unprecedented frequency resolution. However, there are significant challenges in generation, detection, and processing of dual-comb data that have restricted its progress in this spectral region. In this work, we leverage robust 1550 nm few-cycle pulses to generate frequency combs in the UV–visible. We combine these combs with a wavelength multiplexed dual-comb spectrometer and simultaneously retrieve 100 MHz comb-mode-resolved spectra over three distinct harmonics at 386, 500, and 760 nm. The experiments highlight the path to continuous dual-comb coverage spanning 200–750 nm, offering extensive access to electronic transitions in atoms, molecules, and solids.more » « less
-
Frequency combs with mode spacing of 10–20 GHz are critical for increasingly important applications such as astronomical spectrograph calibration, high-speed dual-comb spectroscopy, and low-noise microwave generation. While electro-optic modulators and microresonators can provide narrowband comb sources at this repetition rate, a significant remaining challenge is a means to produce pulses with sufficient peak power to initiate nonlinear supercontinuum generation spanning hundreds of terahertz (THz) as required for self-referencing. Here, we provide a simple, robust, and universal solution to this problem using off-the-shelf polarization-maintaining amplification and nonlinear fiber components. This fiber-integrated approach for nonlinear temporal compression and supercontinuum generation is demonstrated with a resonant electro-optic frequency comb at 1550 nm. We show how to readily achieve pulses shorter than 60 fs at a repetition rate of 20 GHz. The same technique can be applied to picosecond pulses at 10 GHz to demonstrate temporal compression by 9× and achieve 50 fs pulses with a peak power of 5.5 kW. These compressed pulses enable flat supercontinuum generation spanning more than 600 nm after propagation through multi-segment dispersion-tailored anomalous-dispersion highly nonlinear fibers or tantala waveguides. The same 10 GHz source can readily achieve an octave-spanning spectrum for self-referencing in dispersion-engineered silicon nitride waveguides. This simple all-fiber approach to nonlinear spectral broadening fills a critical gap for transforming any narrowband 10–20 GHz frequency comb into a broadband spectrum for a wide range of applications that benefit from the high pulse rate and require access to the individual comb modes.more » « less
An official website of the United States government
