skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 20 GHz fiber-integrated femtosecond pulse and supercontinuum generation with a resonant electro-optic frequency comb
Frequency combs with mode spacing of 10–20 GHz are critical for increasingly important applications such as astronomical spectrograph calibration, high-speed dual-comb spectroscopy, and low-noise microwave generation. While electro-optic modulators and microresonators can provide narrowband comb sources at this repetition rate, a significant remaining challenge is a means to produce pulses with sufficient peak power to initiate nonlinear supercontinuum generation spanning hundreds of terahertz (THz) as required for self-referencing. Here, we provide a simple, robust, and universal solution to this problem using off-the-shelf polarization-maintaining amplification and nonlinear fiber components. This fiber-integrated approach for nonlinear temporal compression and supercontinuum generation is demonstrated with a resonant electro-optic frequency comb at 1550 nm. We show how to readily achieve pulses shorter than 60 fs at a repetition rate of 20 GHz. The same technique can be applied to picosecond pulses at 10 GHz to demonstrate temporal compression by 9× and achieve 50 fs pulses with a peak power of 5.5 kW. These compressed pulses enable flat supercontinuum generation spanning more than 600 nm after propagation through multi-segment dispersion-tailored anomalous-dispersion highly nonlinear fibers or tantala waveguides. The same 10 GHz source can readily achieve an octave-spanning spectrum for self-referencing in dispersion-engineered silicon nitride waveguides. This simple all-fiber approach to nonlinear spectral broadening fills a critical gap for transforming any narrowband 10–20 GHz frequency comb into a broadband spectrum for a wide range of applications that benefit from the high pulse rate and require access to the individual comb modes.  more » « less
Award ID(s):
2009982
PAR ID:
10594229
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Photonics
Volume:
8
Issue:
11
ISSN:
2378-0967
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate a widely spaced, stabilized, and self-referenced opto-electronic oscillator driven electro-optic modulator based optical frequency comb. Using an ultra-stable Fabry-Perot etalon as a stable reference, we simultaneously stabilize a CW laser and generate a low noise and stable RF oscillation used to drive an electro-optic comb. In such a manner, the Fabry-Perot etalon pins both the carrier-envelope-offset frequency (fceo) and the repetition rate of the comb in place (frep), eliminating the need for an external RF oscillator. Usage of the ultra-stable Fabry-Perot etalon as both an optical and RF reference allows the removal of an external RF oscillator. Additionally, we determined the key parameters in producing high contrast ultrashort pulses necessary for coherent octave spanning supercontinuum generation using long and weak pulses associated with electro-optic modulator based combs. By using a monolithically fiber based pulse compression scheme, we produced ultrashort pulses to facilitate measuring the carrier-envelope-offset frequency, allowing for the first self-starting, self-stabilized, and self-referenced opto-electronic oscillator driven electro-optic modulator based optical frequency comb. 
    more » « less
  2. J. Kang, S. Tomasulo (Ed.)
    We employ an efficient 1550 nm resonant waveguide-type electro-optic comb generator with PM nonlinear fiber optics to generate 50 fs pulses and 500 nm broad super- continuum at 20 GHz. 
    more » « less
  3. Electro-optical modulation of a continuous wave laser is a highly stable way to generate frequency combs, gaining popularity in telecommunication and spectroscopic applications. These combs are generated by modulating non-linear electro-optic crystals with radio frequencies, creating equally spaced side-bands centered around the single-frequency seed laser. Electro-optic frequency comb architectures often choose between optical bandwidth (cascaded GHz combs) or higher mode density (chirped RF generation). This work demonstrates an electro-optic frequency comb with > 120 GHz of bandwidth and an 80 MHz repetition rate. The comb has three cascaded electro-optic modulators driven at sequentially lower harmonics, the last megahertz modulation dictating the repetition rate. This architecture can modulate at any individual harmonic and repetition rate without changes to the components. This comb can be used in any applications where a stable and tunable repetition rate is needed. 
    more » « less
  4. A resonant electro-optic (EO) frequency comb is generated through electro-optic modulation of laser light within an optical resonator. Compared to cavity-less EO combs generated in a single pass through a modulator, resonant EO combs can produce broader spectra with lower radio frequency (RF) power and offer a measure of noise filtering beyond the cavity’s linewidth. Understanding, measuring, and suppressing the sources of phase noise in resonant EO combs is crucial for their applications in metrology, astrophotonics, optical clock generation, and fiber-optic communication. According to the standard phase noise model of frequency combs, only two variables—the common mode offset and repetition rate phase noise—are needed to fully describe the phase noise of comb lines. However, in this work, we demonstrate analytically, numerically, and experimentally that this standard model breaks down for resonant EO combs at short timescales (high frequencies) and under certain comb parameters. Specifically, a third phase noise component emerges. Consequently, resonant EO combs feature qualitatively different phase noise from their cavity-less counterparts and may not exhibit the anticipated noise filtering. A more complete description of the deviations from the standard phase noise model is critical to accurately predict the performance of frequency combs. The description presented here provides foundational insights for improved designs tailored to applications such as supercontinuum generation and optical communication. 
    more » « less
  5. Few-cycle pulses were generated by passing a beam from a cryogenically cooled Fe:ZnSe chirped-pulse amplifier (CPA) at a repetition rate of 400 Hz through a gas-filled hollow core fiber (HCF) followed by dispersion-compensating bulk CaF2. The krypton-filled fiber at 370 kPa yielded 1.14-mJ, 42-fs pulses centered at 4.07 µm, while the oxygen-filled fiber at 310 kPa delivered 0.78-mJ, 39-fs pulses spanning from 3 to 5.5 µm. This work is a step toward a high repetition rate mid-wave infrared driver of isolated attosecond keV x-ray pulses. 
    more » « less