skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A new p-value based multiple testing procedure for generalized linear models
Abstract This study introduces a novelp-value-based multiple testing approach tailored for generalized linear models. Despite the crucial role of generalized linear models in statistics, existing methodologies face obstacles arising from the heterogeneous variance of response variables and complex dependencies among estimated parameters. Our aim is to address the challenge of controlling the false discovery rate (FDR) amidst arbitrarily dependent test statistics. Through the development of efficient computational algorithms, we present a versatile statistical framework for multiple testing. The proposed framework accommodates a range of tools developed for constructing a new model matrix in regression-type analysis, including random row permutations and Model-X knockoffs. We devise efficient computing techniques to solve the encountered non-trivial quadratic matrix equations, enabling the construction of pairedp-values suitable for the two-step multiple testing procedure proposed by Sarkar and Tang (Biometrika 109(4): 1149–1155, 2022). Theoretical analysis affirms the properties of our approach, demonstrating its capability to control the FDR at a given level. Empirical evaluations further substantiate its promising performance across diverse simulation settings.  more » « less
Award ID(s):
2210687
PAR ID:
10577564
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Statistics and Computing
Volume:
35
Issue:
3
ISSN:
0960-3174
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Differential privacy provides a rigorous framework for privacy-preserving data analysis. This paper proposes the first differentially private procedure for controlling the false discovery rate (FDR) in multiple hypothesis testing. Inspired by the Benjamini-Hochberg procedure (BHq), our approach is to first repeatedly add noise to the logarithms of the p-values to ensure differential privacy and to select an approximately smallest p-value serving as a promising candidate at each iteration; the selected p-values are further supplied to the BHq and our private procedure releases only the rejected ones. Moreover, we develop a new technique that is based on a backward submartingale for proving FDR control of a broad class of multiple testing procedures, including our private procedure, and both the BHq step- up and step-down procedures. As a novel aspect, the proof works for arbitrary dependence between the true null and false null test statistics, while FDR control is maintained up to a small multiplicative factor. 
    more » « less
  2. Abstract Preharvest yield estimates can be used for harvest planning, marketing, and prescribing in‐season fertilizer and pesticide applications. One approach that is being widely tested is the use of machine learning (ML) or artificial intelligence (AI) algorithms to estimate yields. However, one barrier to the adoption of this approach is that ML/AI algorithms behave as a black block. An alternative approach is to create an algorithm using Bayesian statistics. In Bayesian statistics, prior information is used to help create the algorithm. However, algorithms based on Bayesian statistics are not often computationally efficient. The objective of the current study was to compare the accuracy and computational efficiency of four Bayesian models that used different assumptions to reduce the execution time. In this paper, the Bayesian multiple linear regression (BLR), Bayesian spatial, Bayesian skewed spatial regression, and the Bayesian nearest neighbor Gaussian process (NNGP) models were compared with ML non‐Bayesian random forest model. In this analysis, soybean (Glycine max) yields were the response variable (y), and spaced‐based blue, green, red, and near‐infrared reflectance that was measured with the PlanetScope satellite were the predictor (x). Among the models tested, the Bayesian (NNGP;R2‐testing = 0.485) model, which captures the short‐range correlation, outperformed the (BLR;R2‐testing = 0.02), Bayesian spatial regression (SRM;R2‐testing = 0.087), and Bayesian skewed spatial regression (sSRM;R2‐testing = 0.236) models. However, associated with improved accuracy was an increase in run time from 534 s for the BLR model to 2047 s for the NNGP model. These data show that relatively accurate within‐field yield estimates can be obtained without sacrificing computational efficiency and that the coefficients have biological meaning. However, all Bayesian models had lowerR2values and higher execution times than the random forest model. 
    more » « less
  3. ABSTRACT In many applications, the process of identifying a specific feature of interest often involves testing multiple hypotheses for their joint statistical significance. Examples include mediation analysis, which simultaneously examines the existence of the exposure-mediator and the mediator-outcome effects, and replicability analysis, aiming to identify simultaneous signals that exhibit statistical significance across multiple independent studies. In this work, we present a new approach called the joint mirror (JM) procedure that effectively detects such features while maintaining false discovery rate (FDR) control in finite samples. The JM procedure employs an iterative method that gradually shrinks the rejection region based on progressively revealed information until a conservative estimate of the false discovery proportion is below the target FDR level. Additionally, we introduce a more stringent error measure known as the composite FDR (cFDR), which assigns weights to each false discovery based on its number of null components. We use the leave-one-out technique to prove that the JM procedure controls the cFDR in finite samples. To implement the JM procedure, we propose an efficient algorithm that can incorporate partial ordering information. Through extensive simulations, we show that our procedure effectively controls the cFDR and enhances statistical power across various scenarios, including the case that test statistics are dependent across the features. Finally, we showcase the utility of our method by applying it to real-world mediation and replicability analyses. 
    more » « less
  4. Abstract Adaptive multiple testing with covariates is an important research direction that has gained major attention in recent years. It has been widely recognised that leveraging side information provided by auxiliary covariates can improve the power of false discovery rate (FDR) procedures. Currently, most such procedures are devised with p-values as their main statistics. However, for two-sided hypotheses, the usual data processing step that transforms the primary statistics, known as p-values, into p-values not only leads to a loss of information carried by the main statistics, but can also undermine the ability of the covariates to assist with the FDR inference. We develop a p-value based covariate-adaptive (ZAP) methodology that operates on the intact structural information encoded jointly by the p-values and covariates. It seeks to emulate the oracle p-value procedure via a working model, and its rejection regions significantly depart from those of the p-value adaptive testing approaches. The key strength of ZAP is that the FDR control is guaranteed with minimal assumptions, even when the working model is misspecified. We demonstrate the state-of-the-art performance of ZAP using both simulated and real data, which shows that the efficiency gain can be substantial in comparison with p-value-based methods. Our methodology is implemented in the R package zap. 
    more » « less
  5. Abstract The classical multiple testing model remains an important practical area of statistics with new approaches still being developed. In this paper we develop a new multiple testing procedure inspired by a method sometimes used in a problem with a different focus. Namely, the inference after model selection problem. We note that solutions to that problem are often accomplished by making use of a penalized likelihood function. A classic example is the Bayesian information criterion (BIC) method. In this paper we construct a generalized BIC method and evaluate its properties as a multiple testing procedure. The procedure is applicable to a wide variety of statistical models including regression, contrasts, treatment versus control, change point, and others. Numerical work indicates that, in particular, for sparse models the new generalized BIC would be preferred over existing multiple testing procedures. 
    more » « less