skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 5, 2026

Title: A Proactive Agent Collaborative Framework for Zero‐Shot Multimodal Medical Reasoning
The adoption of large language models (LLMs) in healthcare has garnered significant research interest, yet their performance remains limited due to a lack of domain‐specific knowledge, medical reasoning skills, and their unimodal nature, which restricts them to text‐only inputs. To address these limitations, we propose MultiMedRes, a multimodal medical collaborative reasoning framework that simulates human physicians’ communication by incorporating a learner agent to proactively acquire information from domain‐specific expert models. MultiMedRes addresses medical multimodal reasoning problems through three steps i) Inquire: The learner agent decomposes complex medical reasoning problems into multiple domain‐specific sub‐problems; ii) Interact: The agent engages in iterative “ask‐answer” interactions with expert models to obtain domain‐specific knowledge; and iii) Integrate: The agent integrates all the acquired domain‐specific knowledge to address the medical reasoning problems (e.g., identifying the difference of disease levels and abnormality sizes between medical images). We validate the effectiveness of our method on the task of difference visual question answering for X‐ray images. The experiments show that our zero‐shot prediction achieves state‐of‐the‐art performance, surpassing fully supervised methods, which demonstrates that MultiMedRes could offer trustworthy and interpretable assistance to physicians in monitoring the treatment progression of patients, paving the way for effective human–AI interaction and collaboration.  more » « less
Award ID(s):
2145625
PAR ID:
10577627
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Intelligent Systems
ISSN:
2640-4567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Agarwal, Alekh; Belgrave, Danielle; Cho, Kyunghyun; Oh, Alice (Ed.)
    We propose a new approach to automated theorem proving where an AlphaZero-style agent is self-training to refine a generic high-level expert strategy expressed as a nondeterministic program. An analogous teacher agent is self-training to generate tasks of suitable relevance and difficulty for the learner. This allows leveraging minimal amounts of domain knowledge to tackle problems for which training data is unavailable or hard to synthesize. As a specific illustration, we consider loop invariant synthesis for imperative programs and use neural networks to refine both the teacher and solver strategies. 
    more » « less
  2. Expert-layman text style transfer technologies have the potential to improve communication between members of scientific communities and the general public. High-quality information produced by experts is often filled with difficult jargon laypeople struggle to understand. This is a particularly notable issue in the medical domain, where layman are often confused by medical text online. At present, two bottlenecks interfere with the goal of building high-quality medical expert-layman style transfer systems: a dearth of pretrained medical-domain language models spanning both expert and layman terminologies and a lack of parallel corpora for training the transfer task itself. To mitigate the first issue, we propose a novel language model (LM) pretraining task, Knowledge Base Assimilation, to synthesize pretraining data from the edges of a graph of expert- and layman-style medical terminology terms into an LM during self-supervised learning. To mitigate the second issue, we build a large-scale parallel corpus in the medical expert-layman domain using a margin-based criterion. Our experiments show that transformer-based models pretrained on knowledge base assimilation and other well-established pretraining tasks fine-tuning on our new parallel corpus leads to considerable improvement against expert-layman transfer benchmarks, gaining an average relative improvement of our human evaluation, the Overall Success Rate (OSR), by 106%. 
    more » « less
  3. Cox, Michael T. (Ed.)
    Goal reasoning agents can solve novel problems by detecting an anomaly between expectations and observations; generating explanations about plausible causes for the anomaly; and formulating goals to remove the cause. Yet not all anomalies represent problems. We claim that the task of discerning the difference between benign anomalies and those that represent an actual problem by an agent will increase its performance. Furthermore, we present a new definition of the term “problem” in a goal reasoning context. This paper discusses the role of explanations and goal formulation in response to developing problems and implements the response. The paper illustrates goal formulation in a mine clearance domain and a labor relations domain. We also show the empirical difference between a standard planning agent, an agent that detects anomalies and an agent that recognizes problems. 
    more » « less
  4. Electronic Health Record modeling is crucial for digital medicine. However, existing models ignore higher-order interactions among medical codes and their causal relations towards downstream clinical predictions. To address such limitations, we propose a novel framework CACHE, to provide effective and insightful clinical predictions based on hypergraph representation learning and counterfactual and factual reasoning techniques. Experiments on two real EHR datasets show the superior performance of CACHE. Case studies with a domain expert illustrate a preferred capability of CACHE in generating clinically meaningful interpretations towards the correct predictions. 
    more » « less
  5. Abstract Large language models (LLMs) have shown strong performance in tasks across domains but struggle with chemistry-related problems. These models also lack access to external knowledge sources, limiting their usefulness in scientific applications. We introduce ChemCrow, an LLM chemistry agent designed to accomplish tasks across organic synthesis, drug discovery and materials design. By integrating 18 expert-designed tools and using GPT-4 as the LLM, ChemCrow augments the LLM performance in chemistry, and new capabilities emerge. Our agent autonomously planned and executed the syntheses of an insect repellent and three organocatalysts and guided the discovery of a novel chromophore. Our evaluation, including both LLM and expert assessments, demonstrates ChemCrow’s effectiveness in automating a diverse set of chemical tasks. Our work not only aids expert chemists and lowers barriers for non-experts but also fosters scientific advancement by bridging the gap between experimental and computational chemistry. 
    more » « less