skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Influences of the quasi-two-day wave on plasma bubble behavior over south America
Equatorial Plasma Bubbles (EPBs) are a region of depleted ionospheric densities. EPBs are known to fluctuate both seasonally and day to day, and have been linked to changes in solar activity, geomagnetic activity, and seeding resulting from dynamics occurring at lower altitudes. Here, EPB activity is investigated over a 15-day period with overlapping coincident ground-based 630 nm oxygen airglow measurements, near-infrared hydroxyl mesospheric temperature mapper (MTM) measurements, and Rate Of change of Total Electron Content Index (ROTI) values. The data are compared with the Navy Global Environmental Model (NAVGEM) reanalysis over the same time period. It is found that several days with strong EPB activity coincided with the positive/northward meridional wind phase of the quasi-two-day wave (QTDW) in the mesosphere. These initial observations indicate correlations of the QTDW phase and the occurrence rates of EPBs, and suggest a need for further investigations to assess potential causal relationships that may affect the variability and prevalence of EPBs.  more » « less
Award ID(s):
2152365
PAR ID:
10577850
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Frontiers Media SA
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
11
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a multi-instrument observational analysis of the equatorial plasma bubbles (EPBs) variation over the American sector during a geomagnetically quiet time period of 07–10 December 2019. The day-to-day variability of EPBs and their underlying drivers are investigated through coordinately utilizing the Global-scale Observations of Limb and Disk (GOLD) ultraviolet images, the Ionospheric Connection Explorer (ICON) in-situ and remote sensing data, the global navigation satellite system (GNSS) total electron content (TEC) observations, as well as ionosonde measurements. The main results are as follows: 1) The postsunset EPBs’ intensity exhibited a large day-to-day variation in the same UT intervals, which was fairly noticeable in the evening of December 07, yet considerably suppressed on December 08 and 09, and then dramatically revived and enhanced on December 10. 2) The postsunset linear Rayleigh-Taylor instability growth rate exhibited a different variation pattern. It had a relatively modest peak value on December 07 and 08, yet a larger peak value on December 09 and 10. There was a 2-h time lag of the growth rate peak time in the evening of December 09 from other nights. This analysis did not show an exact one-to-one relationship between the peak growth rate and the observed EPBs intensity. 3) The EPBs’ day-to-day variation has a better agreement with that of traveling ionospheric disturbances and atmospheric gravity waves signatures, which exhibited relatively strong wavelike perturbations preceding/accompanying the observed EPBs on December 07 and 10 yet relatively weak fluctuations on December 08 and 09. These coordinate observations indicate that the initial wavelike seeding perturbations associated with AGWs, together with the catalyzing factor of the instability growth rate, collectively played important roles to modulate the day-to-day variation of EPBs. A strong seeding perturbation could effectively compensate for a moderate strength of Rayleigh-Taylor instability growth rate and therefore their combined effect could facilitate EPB development. Lacking proper seeding perturbations would make it a more inefficient process for the development of EPBs, especially with a delayed peak value of Rayleigh-Taylor instability growth rate. 
    more » « less
  2. Jee, Geonhwa (Ed.)
    Electron density irregularities in the equatorial ionosphere at night are understood in terms of plasma bubbles, which are produced by the transport of low-density plasma from the bottomside of the F region to the topside. Equatorial plasma bubbles (EPBs) have been detected by various techniques on the ground and from space. One of the distinguishing characteristics of EPBs identified from long-term observations is the systematic seasonal and longitudinal variation of the EPB activity. Several hypotheses have been developed to explain the systematic EPB behavior, and now we have good knowledge about the key factors that determine the behavior. However, gaps in our understanding of the EPB climatology still remain primarily because we do not yet have the capability to observe seed perturbations and their growth simultaneously and globally. This paper reviews the occurrence climatology of EPBs identified from observations and the current understanding of its driving mechanisms. 
    more » « less
  3. Abstract Plasma blob is generally a low‐latitude phenomenon occurring at the poleward edge of equatorial plasma bubble (EPB) during post‐sunset periods. Here we report a case of midlatitude ionospheric plasma blob‐like structures occurring along with super EPBs over East Asia around sunrise during the May 2024 great geomagnetic storm. Interestingly, the blob‐like structures appeared at both the poleward and westward edges of EPBs, reached up to 40°N magnetic latitudes, and migrated westward several thousand kilometers together with the bubble. The total electron content (TEC) inside the blob‐like structures was enhanced by ∼50 TEC units relative to the ambient ionosphere. The blob‐like structure at the EPB poleward edge could be partly linked with field‐aligned plasma accumulation due to poleward development of bubble. For the blob‐like structure at the EPB west side, one possible mechanism is that it was formed and enhanced accompanying the bubble evolution and westward drift. 
    more » « less
  4. Abstract This study develops a new Bubble Index to quantify the intensity of 2‐D postsunset equatorial plasma bubbles (EPBs) in the American/Atlantic sector, using Global‐scale Observations of the Limb and Disk (GOLD) nighttime data. A climatology and day‐to‐day variability analysis of EPBs is conducted based on the newly‐derived Bubble Index with the following results: (a) EPBs show considerable seasonal and solar activity dependence, with stronger (weaker) intensity around December (June) solstice and high (low) solar activity years. (b) EPBs exhibit opposite geomagnetic activity dependencies during different storm phases: EPBs are intensified concurrently with an increasing Kp, but are suppressed with high Kp occurring 3–6 hr earlier. (c) For the first time, we found that EPBs' day‐to‐day variation exhibited quasi‐3‐day and quasi‐6‐day periods. A coordinated analysis of Ionospheric Connection Explorer (ICON) winds and ionosonde data suggests that this multi‐day periodicity was related to the planetary wave modulation through the wind‐driven dynamo. 
    more » « less
  5. Abstract The development of an intense total electron content (TEC) depletion band over the United States during the 8 September 2017 geomagnetic storm was understood as the extension of an equatorial plasma bubble (EPB) to midlatitudes in previous studies. However, this study reports non‐EPB aspects within this phenomenon. First, the simultaneous emergence of the TEC depletion band at midlatitudes and EPBs in the equatorial region indicates that the midlatitude TEC depletion band is not initiated by an EPB. Second, the intensification of TEC depletion at midlatitudes during the decay of TEC depletion at intermediate latitudes is anomalous. Third, the location of the TEC depletion band at midlatitudes is inconsistent with the EPB location estimated from zonal plasma motion. Given ionospheric perturbations in North America from the beginning of the storm, it is plausible that the TEC depletion band was locally generated in association with these perturbations. 
    more » « less