skip to main content


Title: Multi-instrumental analysis of the day-to-day variability of equatorial plasma bubbles
This paper presents a multi-instrument observational analysis of the equatorial plasma bubbles (EPBs) variation over the American sector during a geomagnetically quiet time period of 07–10 December 2019. The day-to-day variability of EPBs and their underlying drivers are investigated through coordinately utilizing the Global-scale Observations of Limb and Disk (GOLD) ultraviolet images, the Ionospheric Connection Explorer (ICON) in-situ and remote sensing data, the global navigation satellite system (GNSS) total electron content (TEC) observations, as well as ionosonde measurements. The main results are as follows: 1) The postsunset EPBs’ intensity exhibited a large day-to-day variation in the same UT intervals, which was fairly noticeable in the evening of December 07, yet considerably suppressed on December 08 and 09, and then dramatically revived and enhanced on December 10. 2) The postsunset linear Rayleigh-Taylor instability growth rate exhibited a different variation pattern. It had a relatively modest peak value on December 07 and 08, yet a larger peak value on December 09 and 10. There was a 2-h time lag of the growth rate peak time in the evening of December 09 from other nights. This analysis did not show an exact one-to-one relationship between the peak growth rate and the observed EPBs intensity. 3) The EPBs’ day-to-day variation has a better agreement with that of traveling ionospheric disturbances and atmospheric gravity waves signatures, which exhibited relatively strong wavelike perturbations preceding/accompanying the observed EPBs on December 07 and 10 yet relatively weak fluctuations on December 08 and 09. These coordinate observations indicate that the initial wavelike seeding perturbations associated with AGWs, together with the catalyzing factor of the instability growth rate, collectively played important roles to modulate the day-to-day variation of EPBs. A strong seeding perturbation could effectively compensate for a moderate strength of Rayleigh-Taylor instability growth rate and therefore their combined effect could facilitate EPB development. Lacking proper seeding perturbations would make it a more inefficient process for the development of EPBs, especially with a delayed peak value of Rayleigh-Taylor instability growth rate.  more » « less
Award ID(s):
2149698 2033787 1952737
NSF-PAR ID:
10404695
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
10
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Equatorial plasma bubble (EPB) development during different phases of the geomagnetic storm of 3–4 November 2021 (SYMHmin = −118 nT) was examined using observations and simulations. The initial phase of the storm coincided with postsunset (about 30 min after sunset) at Fortaleza (FZ) and São Luís (SL) with longitudes of ∼38.45°W and ∼44°W respectively on November 3 while the recovery phase of the storm started at 12:45 UT on November 4. GOLD shows the longest (shortest) extension of EPBs on November 3 (4) compared to days before and after November 3 and 4, including quiet days. This indicates an intensification (weakening) of EPBs on November 3 (4). From ionosondes at FZ and SL, a strong (weak) range spread F (SSF (RSF)) was observed on November 3 (4). The postsunset peak F layer height on November 3 reached 450 km and exceeded the preceding and succeeding days by ∼50–100 km at SL indicating the presence of a Prompt Penetration Electric Field (PPEF) which enhanced EPB development via the favorable postsunset vertical E x B and Rayleigh‐Taylor instability (RTI) mechanisms on November 3. The lower‐than‐quiet time F layer height observed on November 4 during Pre‐reversal enhancement (PRE) indicates the presence of a westward‐oriented Disturbance Dynamo Electric Field (DDEF) that undermined RTI growth and led to the weakening of EPB development. Simulation results confirm that the storm‐time electric fields modified the evening‐time ionosphere and influenced the magnitude of verticalE x Bdrift required for the development of EPBs.

     
    more » « less
  2. Abstract

    This study develops a new Bubble Index to quantify the intensity of 2‐D postsunset equatorial plasma bubbles (EPBs) in the American/Atlantic sector, using Global‐scale Observations of the Limb and Disk (GOLD) nighttime data. A climatology and day‐to‐day variability analysis of EPBs is conducted based on the newly‐derived Bubble Index with the following results: (a) EPBs show considerable seasonal and solar activity dependence, with stronger (weaker) intensity around December (June) solstice and high (low) solar activity years. (b) EPBs exhibit opposite geomagnetic activity dependencies during different storm phases: EPBs are intensified concurrently with an increasing Kp, but are suppressed with high Kp occurring 3–6 hr earlier. (c) For the first time, we found that EPBs' day‐to‐day variation exhibited quasi‐3‐day and quasi‐6‐day periods. A coordinated analysis of Ionospheric Connection Explorer (ICON) winds and ionosonde data suggests that this multi‐day periodicity was related to the planetary wave modulation through the wind‐driven dynamo.

     
    more » « less
  3. Abstract

    The influence of atmospheric planetary waves on the occurrence of irregularities in the low latitude ionosphere is investigated using Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension (WACCM‐X) simulations and Global Observations of the Limb and Disk (GOLD) observations. GOLD observations of equatorial plasma bubbles (EPBs) exhibit a ∼6–8 day periodicity during January–February 2021. Analysis of WACCM‐X simulations, which are constrained to reproduce realistic weather variability in the lower atmosphere, reveals that this coincides with an amplification of the westward propagating wavenumber‐1 quasi‐six day wave (Q6DW) in the mesosphere and lower thermosphere (MLT). The WACCM‐X simulated Rayleigh‐Taylor (R‐T) instability growth rate, considered as a proxy of EPB occurrence, is found to exhibit a ∼6‐day periodicity that is coincident with the enhanced Q6DW in the MLT. Additional WACCM‐X simulations performed with fixed solar and geomagnetic activity demonstrate that the ∼6‐day periodicity in the R‐T instability growth rate is related to the forcing from the lower atmosphere. The simulations suggest that the Q6DW influences the day‐to‐day formation of EPBs through interaction with the migrating semidiurnal tide. This leads to periodic oscillations in the zonal winds, resulting in periodic variability in the strength of the prereversal enhancement, which influences the R‐T instability growth rate and EPBs. The results demonstrate that atmospheric planetary waves, and their interaction with atmospheric tides, can have a significant impact on the day‐to‐day variability of EPBs.

     
    more » « less
  4. Abstract

    This paper investigates the local and global ionospheric responses to the 2022 Tonga volcano eruption, using ground‐based Global Navigation Satellite System total electron content (TEC), Swarm in situ plasma density measurements, the Ionospheric Connection Explorer (ICON) Ion Velocity Meter (IVM) data, and ionosonde measurements. The main results are as follows: (a) A significant local ionospheric hole of more than 10 TECU depletion was observed near the epicenter ∼45 min after the eruption, comprising of several cascading TEC decreases and quasi‐periodic oscillations. Such a deep local plasma hole was also observed by space‐borne in situ measurements, with an estimated horizontal radius of 10–15° and persisted for more than 10 hr in ICON‐IVM ion density profiles until local sunrise. (b) Pronounced post‐volcanic evening equatorial plasma bubbles (EPBs) were continuously observed across the wide Asia‐Oceania area after the arrival of volcano‐induced waves; these caused aNedecrease of 2–3 orders of magnitude at Swarm/ICON altitude between 450 and 575 km, covered wide longitudinal ranges of more than 140°, and lasted around 12 hr. (c) Various acoustic‐gravity wave modes due to volcano eruption were observed by accurate Beidou geostationary orbit (GEO) TEC, and the huge ionospheric hole was mainly caused by intense shock‐acoustic impulses. TEC rate of change index revealed globally propagating ionospheric disturbances at a prevailing Lamb‐wave mode of ∼315 m/s; the large‐scale EPBs could be seeded by acoustic‐gravity resonance and coupling to less‐damped Lamb waves, under a favorable condition of volcano‐induced enhancement of dusktime plasma upward E×B drift and postsunset rise of the equatorial ionospheric F‐layer.

     
    more » « less
  5. Abstract

    This study provides first storm time observations of the westward‐propagating medium‐scale traveling ionospheric disturbances (MSTIDs), particularly, associated with characteristic subauroral storm time features, storm‐enhanced density (SED), subauroral polarization stream (SAPS), and enhanced thermospheric westward winds over the continental US. In the four recent (2017–2019) geomagnetic storm cases examined in this study (i.e., 2018‐08‐25/26, 2017‐09‐07/08, 2017‐05‐27/28, and 2016‐02‐02/03 with minimum SYM‐H index −206, −146, −142, and −58 nT, respectively), MSTIDs were observed from dusk‐to‐midnight local times predominately during the intervals of interplanetary magnetic field (IMF) Bz stably southward. Multiple wavefronts of the TIDs were elongated NW‐SE, 2°–3° longitude apart, and southwestward propagated at a range of zonal phase speeds between 100 and 300 m/s. These TIDs initiated in the northeastern US and intensified or developed in the central US with either the coincident SED structure (especially the SED basis region) or concurrent small electron density patches adjacent to the SED. Observations also indicate coincident intense storm time electric fields associated with the magnetosphere–ionosphere–thermosphere coupling electrodynamics at subauroral latitudes (such as SAPS) as well as enhanced thermospheric westward winds. We speculate that these electric fields trigger plasma instability (with large growth rates) and MSTIDs. These electrified MSTIDs propagated westward along with the background westward ion flow which resulted from the disturbance westward wind dynamo and/or SAPS.

     
    more » « less