High-refractive-index nanoantennas have attracted significant attention lately because of the strong excitations of electric and magnetic resonances in these nanoantennas. Here, we theoretically investigate the excitation of multipolar Mie resonances in high-refractive-index nanoantennas that are immersed in a negative-index medium. Our analysis shows a significant enhancement of magnetic resonances in this case. Furthermore, the magnetic dipolar and quadrupolar resonances exhibit a π-shift compared to these magnetic resonances in a conventional medium, which stems from the “left-handedness” of the negative-index medium. As a result, the spectral regions where electric and magnetic resonances are in-phase or out-of-phase complement, or opposite, to those in a conventional medium. Most importantly, we demonstrate nanoantenna magnetic resonances in two practical cases of negative-index media realized with common materials, such as multilayer structures with surface waves with negative effective mode index and fishnet metamaterial. These findings represent significant progress toward the realization of hybrid emitting structures that exhibit transitions with both electric and magnetic dipolar characteristics and pave the way for greater flexibility in controlling radiation patterns from quantum emitters.
more »
« less
Resonant Metasurfaces with Van Der Waals Hyperbolic Nanoantennas and Extreme Light Confinement
This work reports on a metasurface based on optical nanoantennas made of van der Waals material hexagonal boron nitride. The optical nanoantenna made of hyperbolic material was shown to support strong localized resonant modes stemming from the propagating high-k waves in the hyperbolic material. An analytical approach was used to determine the mode profile and type of cuboid nanoantenna resonances. An electric quadrupolar mode was demonstrated to be associated with a resonant magnetic response of the nanoantenna, which resembles the induction of resonant magnetic modes in high-refractive-index nanoantennas. The analytical model accurately predicts the modes of cuboid nanoantennas due to the strong boundary reflections of the high-k waves, a capability that does not extend to plasmonic or high-refractive-index nanoantennas, where the imperfect reflection and leakage of the mode from the cavity complicate the analysis. In the reported metasurface, excitations of the multipolar resonant modes are accompanied by directional scattering and a decrease in the metasurface reflectance to zero, which is manifested as the resonant Kerker effect. Van der Waals nanoantennas are envisioned to support localized resonances and can become an important functional element of metasurfaces and transdimensional photonic components. By designing efficient subwavelength scatterers with high-quality-factor resonances, this work demonstrates that this type of nanoantenna made of naturally occurring hyperbolic material is a viable substitute for plasmonic and all-dielectric nanoantennas in developing ultra-compact photonic components.
more »
« less
- Award ID(s):
- 2418519
- PAR ID:
- 10577856
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Nanomaterials
- Volume:
- 14
- Issue:
- 18
- ISSN:
- 2079-4991
- Page Range / eLocation ID:
- 1539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Metasurfaces, composed of engineered nanoantennas, enable unprecedented control over electromagnetic waves by leveraging multipolar resonances to tailor light–matter interactions. This review explores key physical mechanisms that govern their optical properties, including the role of multipolar resonances in shaping metasurface responses, the emergence of bound states in the continuum (BICs) that support high-quality factor modes, and the Purcell effect, which enhances spontaneous emission rates at the nanoscale. These effects collectively underpin the design of advanced photonic devices with tailored spectral, angular, and polarization-dependent properties. This review discusses recent advances in metasurfaces and applications based on them, highlighting research that employs full-wave numerical simulations, analytical and semi-analytic techniques, multipolar decomposition, nanofabrication, and experimental characterization to explore the interplay of multipolar resonances, bound and quasi-bound states, and enhanced light–matter interactions. A particular focus is given to metasurface-enhanced photodetectors, where structured nanoantennas improve light absorption, spectral selectivity, and quantum efficiency. By integrating metasurfaces with conventional photodetector architectures, it is possible to enhance responsivity, engineer photocarrier generation rates, and even enable functionalities such as polarization-sensitive detection. The interplay between multipolar resonances, BICs, and emission control mechanisms provides a unified framework for designing next-generation optoelectronic devices. This review consolidates recent progress in these areas, emphasizing the potential of metasurface-based approaches for high-performance sensing, imaging, and energy-harvesting applications.more » « less
-
Abstract The cooperative phenomena stemming from the radiation field-mediated coupling between individual quantum emitters are presently attracting broad interest for applications related to on-chip photonic quantum memories and long-range entanglement. Common to these applications is the generation of electro-magnetic modes over macroscopic distances. Much research, however, is still needed before such systems can be deployed in the form of practical devices, starting with the investigation of alternate physical platforms. Quantum emitters in two-dimensional (2D) systems provide an intriguing route because these materials can be adapted to arbitrarily shaped substrates to form hybrid systems wherein emitters are near-field-coupled to suitable optical modes. Here, we report a scalable coupling method allowing color center ensembles in a van der Waals material (hexagonal boron nitride) to couple to a delocalized high-quality plasmonic surface lattice resonance. This type of architecture is promising for photonic applications, especially given the ability of the hexagonal boron nitride emitters to operate as single-photon sources at room temperature.more » « less
-
Optical metasurfaces provide solutions to label-free biochemical sensing by localizing light resonantly beyond the diffraction limit, thereby selectively enhancing light–matter interactions for improved analytical performance. However, high-Qresonances in metasurfaces are usually achieved in the reflection mode, which impedes metasurface integration into compact imaging systems. Here, we demonstrate a metasurface platform for advanced biochemical sensing based on the physics of the bound states in the continuum (BIC) and electromagnetically induced transparency (EIT) modes, which arise when two interfering resonances from a periodic pattern of tilted elliptic holes overlap both spectrally and spatially, creating a narrow transparency window in the mid-infrared spectrum. We experimentally measure these resonant peaks observed in transmission mode (Q∼734 atλ∼8.8µm) in free-standing silicon membranes and confirm their tunability through geometric scaling. We also demonstrate the strong coupling of the BIC-EIT modes with a thinly coated PMMA film on the metasurface, characterized by a large Rabi splitting (32cm−1) and biosensing of protein monolayers in transmission mode. Our new photonic platform can facilitate the integration of metasurface biochemical sensors into compact and monolithic optical systems while being compatible with scalable manufacturing, thereby clearing the way for on-site biochemical sensing in everyday applications.more » « less
-
Abstract One of the main bottlenecks in the development of terahertz (THz) and long-wave infrared (LWIR) technologies is the limited intrinsic response of traditional materials. Hyperbolic phonon polaritons (HPhPs) of van der Waals semiconductors couple strongly with THz and LWIR radiation. However, the mismatch of photon − polariton momentum makes far-field excitation of HPhPs challenging. Here, we propose an In-Plane Hyperbolic Polariton Tuner that is based on patterning van der Waals semiconductors, here α-MoO3, into ribbon arrays. We demonstrate that such tuners respond directly to far-field excitation and give rise to LWIR and THz resonances with high quality factors up to 300, which are strongly dependent on in-plane hyperbolic polariton of the patterned α-MoO3. We further show that with this tuner, intensity regulation of reflected and transmitted electromagnetic waves, as well as their wavelength and polarization selection can be achieved. Our results can help the development of THz and LWIR miniaturized devices.more » « less
An official website of the United States government

