skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Improvement of data analytics techniques in reflection high-energy electron diffraction to enable machine learning
Perovskite oxides such as LaFeO3 are a well-studied family of materials that possess a wide range of useful and novel properties. Successfully synthesizing perovskite oxide samples usually requires a significant number of growth attempts and a detailed film characterization on each sample to find the optimal growth window of a material. The most common real-time in situ diagnostic technique available during molecular beam epitaxy (MBE) synthesis is reflection high-energy electron diffraction (RHEED). Conventional use of RHEED allows a highly experienced operator to determine growth rate by monitoring intensity oscillations and make some qualitative observations during growth, such as recognizing the sample has become amorphous or recognizing that large islands have formed on the surface. However, due to a lack of theoretical understanding of the diffraction patterns, finer, more precise levels of observations are challenging. To address these limitations, we implement new data analytics techniques in the growth of three LaFeO3 samples on Nb-doped SrTiO3 by MBE. These techniques improve our ability to perform unsupervised machine learning using principal component analysis (PCA) and k-means clustering by using drift correction to overcome sample or stage motion during growth and intensity transformations that highlight more subtle features in the images such as Kikuchi bands. With this approach, we enable the first demonstration of PCA and k-means across multiple samples, allowing for quantitative comparison of RHEED videos for two LaFeO3 film samples. These capabilities set the stage for real-time processing of RHEED data during growth to enable machine learning-accelerated film synthesis.  more » « less
Award ID(s):
2045993 1809847 2527684
PAR ID:
10577938
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
43
Issue:
3
ISSN:
0734-2101
Page Range / eLocation ID:
032701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thin film deposition is a fundamental technology for the discovery, optimization, and manufacturing of functional materials. Deposition by molecular beam epitaxy (MBE) typically employs reflection high-energy electron diffraction (RHEED) as a real-time in situ probe of the growing film. However, the state-of-the-art for RHEED analysis during deposition requires human observation. Here, we present an approach using machine learning (ML) methods to monitor, analyze, and interpret RHEED images on-the-fly during thin film deposition. In the analysis workflow, RHEED pattern images are collected at one frame per second and featurized using a pretrained deep convolutional neural network. The feature vectors are then statistically analyzed to identify changepoints; these changepoints can be related to changes in the deposition mode from initial film nucleation to a transition regime, smooth film deposition, and in some cases, an additional transition to a rough, islanded deposition regime. The feature vectors are additionally analyzed via graph analysis and community classification. The graph is quantified as a stabilization plot, and we show that inflection points in the stabilization plot correspond to changes in the growth regime. The full RHEED analysis workflow is termed RHAAPsody and includes data transfer and output to a visual dashboard. We demonstrate the functionality of RHAAPsody by analyzing the precaptured RHEED images from epitaxial depositions of anatase TiO2 on SrTiO3(001) and show that the analysis workflow can be executed in less than 1 s. Our approach shows promise as one component of ML-enabled real-time feedback control of the MBE deposition process. 
    more » « less
  2. We report the design, fabrication, and testing of an atomic layer deposition (ALD) system that is capable of reflection high energy electron diffraction (RHEED) in a single chamber. The details and specifications of the system are described and include capabilities of RHEED at varied accelerating voltages, sample rotation (azimuthal) control, sample height control, sample heating up to set temperatures of 1050 °C, and either single- or dual-differential pumping designs. Thermal and flow simulations were used to justify selected system dimensions as well as carrier gas/precursor mass flow rates. Temperature calibration was conducted to determine actual sample temperatures that are necessary for meaningful analysis of thermally induced transitions in ALD thin films. Several demonstrations of RHEED in the system are described. Calibration of the camera length was conducted using a gold thin film by analyzing RHEED images. Finally, RHEED conducted at a series of increasing temperatures was used to monitor the crystallization of an ALD HfO2 thin film. The crystallization temperature and the ring pattern were consistent with the monoclinic structure as determined by separate x-ray diffraction-based measurements. 
    more » « less
  3. 60 and 120 nm thick epitaxial films of isotopically enriched bcc iron (α-57Fe) grown on (100) MgO substrates are studied using x-ray diffraction, reflection high-energy electron diffraction (RHEED), and conversion electron Mössbauer spectroscopy (CEMS). X-ray diffraction and RHEED data indicate that each film behaves as a single crystal material consistent with the relative intensity ratios of the spectral lines observed in the CEMS spectrum. Data further confirm that the easy axis of magnetization lies along the ⟨100⟩ family of directions of the cubic α-iron film. The relevant theory to understand the relative intensities in a magnetic Mössbauer spectrum is outlined and is applied to interpret the intensity ratio of the Mössbauer spectral lines of a more complex hexaferrite magnetic system, BaFe12O19, grown on a single crystal substrate of Sr1.03Ga10.81Mg0.58Zr0.58O19. The conclusion that the magnetic moment in (0001)-oriented epitaxial BaFe12O19 film lies perpendicular to the plane of the substrate is deduced from the absence of the second and fifth lines by comparing the CEMS spectrum of the epitaxial (0001) BaFe12O19 film with the spectrum of a polycrystalline BaFe12O19 powder. Our measurements using CEMS corroborate what is known about the direction of the magnetic easy axis in α-iron and BaFe12O19 and motivate the use of CEMS to probe more complex atomically engineered epitaxial heterostructures, including superlattices. 
    more » « less
  4. Nanocrystalline MnFe2O4 has shown promise as a catalyst for the oxygen reduction reaction (ORR) in alkaline solutions, but the material has been sparingly studied as highly ordered thin-film catalysts. To examine the role of surface termination and Mn and Fe site occupancy, epitaxial MnFe2O4 and Fe3O4 spinel oxide films were grown on (001)- and (111)-oriented Nb:SrTiO3 perovskite substrates using molecular beam epitaxy and studied as electrocatalysts for the oxygen reduction reaction (ORR). High-resolution X-ray diffraction (HRXRD) and X-ray photoelectron spectroscopy (XPS) show the synthesis of pure phase materials, while scanning transmission electron microscopy (STEM) and reflection high-energy electron diffraction (RHEED) analysis demonstrate island-like growth of (111) surface-terminated pyramids on both (001)- and (111)-oriented substrates, consistent with the literature and attributed to the lattice mismatch between the spinel films and the perovskite substrate. Cyclic voltammograms under a N2 atmosphere revealed distinct redox features for Mn and Fe surface termination based on comparison of MnFe2O4 and Fe3O4. Under an O2 atmosphere, electrocatalytic reduction of oxygen was observed at both Mn and Fe redox features; however, a diffusion-limited current was only achieved at potentials consistent with Fe reduction. This result contrasts with that of nanocrystalline MnFe2O4 reported in the literature where the diffusion-limited current is achieved with Mn-based catalysis. This difference is attributed to a low density of Mn surface termination, as determined by the integration of current from CVs collected under N2, in addition to low conductivity through the MnFe2O4 film due to the degree of inversion. Such low densities are attributed to the synthetic method and island-like growth pattern and highlight challenges in studying ORR catalysis with single-crystal spinel materials. 
    more » « less
  5. A seemingly simple oxide with a rutile structure, RuO2, has been shown to possess several intriguing properties ranging from strain-stabilized superconductivity to a strong catalytic activity. Much interest has arisen surrounding the controlled synthesis of RuO2 films, but unfortunately, utilizing atomically controlled deposition techniques, such as molecular beam epitaxy (MBE), has been difficult due to the ultra-low vapor pressure and low oxidation potential of Ru. Here, we demonstrate the growth of epitaxial, single crystalline RuO2 films on different substrate orientations using the novel solid-source metal–organic (MO) MBE. This approach circumvents these issues by supplying Ru using a “pre-oxidized” solid MO precursor containing Ru. High-quality epitaxial RuO2 films with a bulk-like room-temperature resistivity of 55 μΩ cm were obtained at a substrate temperature as low as 300 °C. By combining x-ray diffraction, transmission electron microscopy, and electrical measurements, we discuss the effect of substrate temperature, orientation, film thickness, and strain on the structure and electrical properties of these films. Our results illustrating the use of a novel solid-source metal–organic MBE approach pave the way to the atomic-layer controlled synthesis of complex oxides of “stubborn” metals, which are not only difficult to evaporate but also hard to oxidize. 
    more » « less