skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Generative AI Approach to Pricing Mechanisms and Consumer Behavior in the Electric Vehicle Charging Market
The electrification of transportation is a growing strategy to reduce mobile source emissions and air pollution globally. To encourage adoption of electric vehicles, there is a need for reliable evidence about pricing in pub-lic charging stations that can serve a greater number of communities. However, user-entered pricing information by thousands of charge point operators (CPOs) has created ambiguity for large-scale aggregation, increasing both the cost of analysis for researchers and search costs for consumers. In this paper, we use large language models to address standing challenges with price discovery in distributed digital data. We show that generative AI models can effectively extract pricing mechanisms from unstructured text with high accuracy, and at substantially lower cost of three to four orders of magnitude lower than human curation (USD 0.006 pennies per observation). We exploit the few-shot learning capabilities of GPT-4 with human-in-the-loop feedback—beating prior classification performance benchmarks with fewer training data. The most common pricing models include free, energy-based (per kWh), and time-based (per unit time), with tiered pricing (variable pricing based on usage) being the most prevalent among paid stations. Behavioral insights from a US nationally representative sample of 13,008 stations suggest that EV users are commonly frustrated with the slower than expected charging rates and the total cost of charging. This study uncovers additional consumer barriers to charging services concerning the need for better price standardization.  more » « less
Award ID(s):
1945332
PAR ID:
10577957
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Association for the Advancement of Artificial Intelligence (AAAI) Proceedings
Date Published:
Journal Name:
Proceedings of the AAAI Symposium Series
Volume:
2
Issue:
1
ISSN:
2994-4317
Page Range / eLocation ID:
54 to 61
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapid growth of electric vehicles (EVs) is driving the expansion of charging infrastructure globally. As charging stations become ubiquitous, their substantial electricity consumption can influence grid operation and electricity pricing. Naturally, some groups of charging stations, which could be jointly operated by a company, may coordinate to decide their charging profile. While coordination among all charging stations is ideal, it is unclear if coordination of some charging stations is better than no coordination. In this paper, we analyze this intermediate regime between no and full coordination of charging stations. We model EV charging as a non-cooperative aggregative game, where each station’s cost is determined by both monetary payments tied to reactive electricity prices on the grid and its sensitivity to deviations from a desired charging profile. We consider a solution concept that we call C-Nash equilibrium, which is tied to a coalition C of charging stations coordinating to reduce their costs. We provide sufficient conditions, in terms of the demand and sensitivity of charging stations, to determine when independent (aka uncoordinated) operation of charging stations could result in lower overall costs to charging stations, coalition and charging stations outside the coalition. Somewhat counter to common intuition, we show numerical instances where allowing charging stations to operate independently is better than coordinating a subset of stations as a coalition. Jointly, these results provide operators of charging stations insights into how to coordinate their charging behavior, and open several research directions. 
    more » « less
  2. We are witnessing a rapid growth of electrified vehicles due to the ever-increasing concerns on urban air quality and energy security. Compared to other types of electric vehicles, electric buses have not yet been prevailingly adopted worldwide due to their high owning and operating costs, long charging time, and the uneven spatial distribution of charging facilities. Moreover, the highly dynamic environment factors such as unpredictable traffic congestion, different passenger demands, and even the changing weather can significantly affect electric bus charging efficiency and potentially hinder the further promotion of large-scale electric bus fleets. To address these issues, in this article, we first analyze a real-world dataset including massive data from 16,359 electric buses, 1,400 bus lines, and 5,562 bus stops. Then, we investigate the electric bus network to understand its operating and charging patterns, and further verify the necessity and feasibility of a real-time charging scheduling. With such understanding, we design busCharging , a pricing-aware real-time charging scheduling system based on Markov Decision Process to reduce the overall charging and operating costs for city-scale electric bus fleets, taking the time-variant electricity pricing into account. To show the effectiveness of busCharging , we implement it with the real-world data from Shenzhen, which includes GPS data of electric buses, the metadata of all bus lines and bus stops, combined with data of 376 charging stations for electric buses. The evaluation results show that busCharging dramatically reduces the charging cost by 23.7% and 12.8% of electricity usage simultaneously. Finally, we design a scheduling-based charging station expansion strategy to verify our busCharging is also effective during the charging station expansion process. 
    more » « less
  3. Gentry, E; Ju, F; Liu, X (Ed.)
    This research investigates optimal pricing strategies in a service-providing queueing system where customers may renege before service completion. Prices are quoted upon customer arrivals and the incoming customers join the system if their willingness to pay exceeds the quoted price. While waiting in line or during service, customers may get impatient and leave without service, incurring an abandonment cost. There is also a per-unit time per-customer holding cost. Our objective is to maximize the long-run average profit through optimal pricing policies. We model the problem as a Markov decision process and identify the optimal pricing using policy iteration. We also study the structure of the optimal pricing policy. Furthermore, we show that under mild assumptions, the optimal price increases as the number of customers in the system increases. When those assumptions do not hold, optimal price decreases and then increases as the number of customers in the system grows. 
    more » « less
  4. Gentry, E; Ju, F; Liu, X (Ed.)
    This research investigates optimal pricing strategies in a service-providing queueing system where customers may renege before service completion. Prices are quoted upon customer arrivals and the incoming customers join the system if their willingness to pay exceeds the quoted price. While waiting in line or during service, customers may get impatient and leave without service, incurring an abandonment cost. There is also a per-unit time per-customer holding cost. Our objective is to maximize the long-run average profit through optimal pricing policies. We model the problem as a Markov decision process and identify the optimal pricing using policy iteration. We also study the structure of the optimal pricing policy. Furthermore, we show that under mild assumptions, the optimal price increases as the number of customers in the system increases. When those assumptions do not hold, optimal price decreases and then increases as the number of customers in the system grows. 
    more » « less
  5. Price discrimination strategies, which offer different prices to customers based on differences in their valuations, have become common practice. Although it allows sellers to increase their profits, it also raises several concerns in terms of fairness (e.g., by charging higher prices (or denying access) to protected minorities in case they have higher (or lower) valuations than the general population). This topic has received extensive attention from media, industry, and regulatory agencies. In this paper, we consider the problem of setting prices for different groups under fairness constraints. We first propose four definitions: fairness in price, demand, consumer surplus, and no-purchase valuation. We prove that satisfying more than one of these fairness constraints is impossible even under simple settings. We then analyze the pricing strategy of a profit-maximizing seller and the impact of imposing fairness on the seller’s profit, consumer surplus, and social welfare. Under a linear demand model, we find that imposing a small amount of price fairness increases social welfare, whereas too much price fairness may result in a lower welfare relative to imposing no fairness. On the other hand, imposing fairness in demand or consumer surplus always decreases social welfare. Finally, no-purchase valuation fairness always increases social welfare. We observe similar patterns under several extensions and for other common demand models numerically. Our results and insights provide a first step in understanding the impact of imposing fairness in the context of discriminatory pricing. This paper was accepted by Jayashankar Swaminathan, operations management. Funding: A. N. Elmachtoub was supported by the Division of Civil, Mechanical and Manufacturing Innovation [Grants 1763000 and 1944428]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2022.4317 . 
    more » « less