Abstract Line flux ratios from [O ii] doublets can probe electron densities in the interstellar medium of galaxies. We employ the Southern African Large Telescope’s (SALT) Robert Stobie Spectrograph (RSS), which provides sufficient resolution (R ∼ 3000) to split the [O ii] doublets, to target galaxies from Hobby-Eberly Telescope Dark Energy Experiment and One-hundred-deg2DECam Imaging in Narrowbands with emission line fluxes of at least 2 × 10−16 erg cm−2 s−1. Reduction is carried out using RSSMOSPipeline to reduce SALT-RSS data through wavelength calibration. Despite SALT-RSS being known for its difficulty to flux calibrate, we present spectra that have been flux calibrated using alignment stars with Sloan Digital Sky Survey spectra as standards. We combine multiple spectroscopic settings to obtain full 2D spectra across a wavelength range of 3500–9500 Å. A 1D spectrum can then be extracted to calculate flux ratios and line widths, revealing important physical properties of these bright [O ii]-emitters.
more »
« less
CARRSSPipeline: Flux Calibration and Nonlinear Reprojection for SALT-RSS Multi-Object Spectroscopy over 3500–9500 Å
Abstract The Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT) offers multi-object spectroscopy over an 8′ field-of-view at resolutions up toR ∼ 3000. Reduction is typically conducted usingRSSMOSPipeline, which performs basic data calibrations, sky subtraction, and wavelength calibration. However, flux calibration of SALT-RSS using spectrophotometric standard star observations is difficult due to variable primary mirror illumination. We describe a novel approach where stars with Sloan Digital Sky Survey spectra are included as alignment stars on RSS slitmasks and then used to perform a rough flux calibration of the resulting data. RSS offers multiple settings that can be pieced together to cover the entire optical range, utilizing grating angle dithers to fill chip gaps. We introduce a nonlinear reprojection routine that defines an exponential wavelength array spanning 3500–9500 Å with gradually decreasing resolution and then reprojects several individual settings into a single 2D spectrum for each object. Our flux calibration and nonlinear reprojection routines are released as part of the Calibration And Reprojection for RSS Pipeline (CARRSSPipeline), that enables the extraction of full-optical-coverage, flux-calibrated, medium-resolution one-dimensional spectra.
more »
« less
- Award ID(s):
- 2206222
- PAR ID:
- 10578007
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Publications of the Astronomical Society of the Pacific
- Volume:
- 137
- Issue:
- 3
- ISSN:
- 0004-6280
- Format(s):
- Medium: X Size: Article No. 034503
- Size(s):
- Article No. 034503
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a pioneering achievement in the high-precision photometric calibration of CMOS-based photometry, by application of the Gaia Blue Photometer or Red Photometer (XP) spectra–based synthetic photometry method to the mini-SiTian array (MST) photometry. Through 79 repeated observations of thef02field on the night, we find good internal consistency in the calibrated MSTGMST-band magnitudes for relatively bright stars, with a precision of about 4 mmag forGMST ∼ 13. Results from more than 30 different nights (over 3100 observations) further confirm this internal consistency, indicating that the 4 mmag precision is stable and achievable over timescales of months. An independent external validation using spectroscopic data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR10 and high-precision photometric data using CCDs from Gaia DR3 reveals a zero-point consistency better than 1 mmag. Our results clearly demonstrate that CMOS photometry is on par with CCD photometry for high-precision results, highlighting the significant capabilities of CMOS cameras in astronomical observations, especially for large-scale telescope survey arrays.more » « less
-
Abstract We calibrate spectrophotometric optical spectra of 32 stars commonly used as standard stars, referenced to 14 stars already on the Hubble Space Telescope–based CALSPEC flux system. Observations of CALSPEC and non-CALSPEC stars were obtained with the SuperNova Integral Field Spectrograph over the wavelength range 3300–9400 Å as calibration for the Nearby Supernova Factory cosmology experiment. In total, this analysis used 4289 standard-star spectra taken on photometric nights. As a modern cosmology analysis, all presubmission methodological decisions were made with the flux scale and external comparison results blinded. The large number of spectra per star allows us to treat the wavelength-by-wavelength calibration for all nights simultaneously with a Bayesian hierarchical model, thereby enabling a consistent treatment of the Type Ia supernova cosmology analysis and the calibration on which it critically relies. We determine the typical per-observation repeatability (median 14 mmag for exposures ≳5 s), the Maunakea atmospheric transmission distribution (median dispersion of 7 mmag with uncertainty 1 mmag), and the scatter internal to our CALSPEC reference stars (median of 8 mmag). We also check our standards against literature filter photometry, finding generally good agreement over the full 12 mag range. Overall, the mean of our system is calibrated to the mean of CALSPEC at the level of ∼3 mmag. With our large number of observations, careful cross-checks, and 14 reference stars, our results are the best calibration yet achieved with an integral-field spectrograph, and among the best calibrated surveys.more » « less
-
Abstract We present five far- and near-ultraviolet spectra of the Type II plateau supernova, SN 2022acko, obtained 5, 6, 7, 19, and 21 days after explosion, all observed with the Hubble Space Telescope/Space Telescope Imaging Spectrograph. The first three epochs are earlier than any Type II plateau supernova has been observed in the far-ultraviolet revealing unprecedented characteristics. These three spectra are dominated by strong lines, primarily from metals, which contrasts with the featureless early optical spectra. The flux decreases over the initial time series as the ejecta cool and line blanketing takes effect. We model this unique data set with the non–local thermodynamic equilibrium radiation transport codeCMFGEN, finding a good match to the explosion of a low-mass red supergiant with energyEkin= 6 × 1050erg. With these models we identify, for the first time, the ions that dominate the early ultraviolet spectra. We present optical photometry and spectroscopy, showing that SN 2022acko has a peak absolute magnitude ofV= − 15.4 mag and plateau length of ∼115 days. The spectra closely resemble those of SN 2005cs and SN 2012A. Using the combined optical and ultraviolet spectra, we report the fraction of flux as a function of bluest wavelength on days 5, 7, and 19. We create a spectral time-series of Type II supernovae in the ultraviolet, demonstrating the rapid decline of flux over the first few weeks of evolution. Future observations of Type II supernovae are required to map out the landscape of exploding red supergiants, with and without circumstellar material, which is best revealed in high-quality ultraviolet spectra.more » « less
-
Abstract Based on a template-matching method, we estimate the barium (Ba) abundances for stellar spectra from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Medium-Resolution Spectroscopic Survey (MRS). The Ba abundances of 198,011 stars have been determined from MRS spectra with signal-to-noise ratios (S/N) > 40 combined with the stellar atmospheric parameters from the LAMOST Low-Resolution Spectroscopic Survey DR9 by the LAMOST Stellar Parameter Pipeline. The uncertainties in the Ba abundances from the LAMOST MRS spectra are less than 0.3 dex when S/N exceeds 40, which align closely with the results based on the high-resolution UVES spectra from the Gaia-ESO survey obtained by spectral synthesis. Further analysis of Ba abundances from repeated observations of the same stars reveals that random errors related to spectral quality remain below 0.3 dex at the same S/N, with a systematic overestimation for the low-S/N spectra. This extensive sample of stellar Ba abundances will enhance studies of thes-,i-, andr-processes, and deepen our understanding of the chemical-evolution history of the Milky Way.more » « less
An official website of the United States government
