Abstract Line flux ratios from [O ii] doublets can probe electron densities in the interstellar medium of galaxies. We employ the Southern African Large Telescope’s (SALT) Robert Stobie Spectrograph (RSS), which provides sufficient resolution (R ∼ 3000) to split the [O ii] doublets, to target galaxies from Hobby-Eberly Telescope Dark Energy Experiment and One-hundred-deg2DECam Imaging in Narrowbands with emission line fluxes of at least 2 × 10−16 erg cm−2 s−1. Reduction is carried out using RSSMOSPipeline to reduce SALT-RSS data through wavelength calibration. Despite SALT-RSS being known for its difficulty to flux calibrate, we present spectra that have been flux calibrated using alignment stars with Sloan Digital Sky Survey spectra as standards. We combine multiple spectroscopic settings to obtain full 2D spectra across a wavelength range of 3500–9500 Å. A 1D spectrum can then be extracted to calculate flux ratios and line widths, revealing important physical properties of these bright [O ii]-emitters.
more »
« less
CARRSSPipeline: Flux Calibration and Nonlinear Reprojection for SALT-RSS Multi-Object Spectroscopy over 3500–9500 Å
Abstract The Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT) offers multi-object spectroscopy over an 8′ field-of-view at resolutions up toR ∼ 3000. Reduction is typically conducted usingRSSMOSPipeline, which performs basic data calibrations, sky subtraction, and wavelength calibration. However, flux calibration of SALT-RSS using spectrophotometric standard star observations is difficult due to variable primary mirror illumination. We describe a novel approach where stars with Sloan Digital Sky Survey spectra are included as alignment stars on RSS slitmasks and then used to perform a rough flux calibration of the resulting data. RSS offers multiple settings that can be pieced together to cover the entire optical range, utilizing grating angle dithers to fill chip gaps. We introduce a nonlinear reprojection routine that defines an exponential wavelength array spanning 3500–9500 Å with gradually decreasing resolution and then reprojects several individual settings into a single 2D spectrum for each object. Our flux calibration and nonlinear reprojection routines are released as part of the Calibration And Reprojection for RSS Pipeline (CARRSSPipeline), that enables the extraction of full-optical-coverage, flux-calibrated, medium-resolution one-dimensional spectra.
more »
« less
- Award ID(s):
- 2206222
- PAR ID:
- 10578007
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Publications of the Astronomical Society of the Pacific
- Volume:
- 137
- Issue:
- 3
- ISSN:
- 0004-6280
- Format(s):
- Medium: X Size: Article No. 034503
- Size(s):
- Article No. 034503
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We calibrate spectrophotometric optical spectra of 32 stars commonly used as standard stars, referenced to 14 stars already on the Hubble Space Telescope–based CALSPEC flux system. Observations of CALSPEC and non-CALSPEC stars were obtained with the SuperNova Integral Field Spectrograph over the wavelength range 3300–9400 Å as calibration for the Nearby Supernova Factory cosmology experiment. In total, this analysis used 4289 standard-star spectra taken on photometric nights. As a modern cosmology analysis, all presubmission methodological decisions were made with the flux scale and external comparison results blinded. The large number of spectra per star allows us to treat the wavelength-by-wavelength calibration for all nights simultaneously with a Bayesian hierarchical model, thereby enabling a consistent treatment of the Type Ia supernova cosmology analysis and the calibration on which it critically relies. We determine the typical per-observation repeatability (median 14 mmag for exposures ≳5 s), the Maunakea atmospheric transmission distribution (median dispersion of 7 mmag with uncertainty 1 mmag), and the scatter internal to our CALSPEC reference stars (median of 8 mmag). We also check our standards against literature filter photometry, finding generally good agreement over the full 12 mag range. Overall, the mean of our system is calibrated to the mean of CALSPEC at the level of ∼3 mmag. With our large number of observations, careful cross-checks, and 14 reference stars, our results are the best calibration yet achieved with an integral-field spectrograph, and among the best calibrated surveys.more » « less
-
Abstract We present five far- and near-ultraviolet spectra of the Type II plateau supernova, SN 2022acko, obtained 5, 6, 7, 19, and 21 days after explosion, all observed with the Hubble Space Telescope/Space Telescope Imaging Spectrograph. The first three epochs are earlier than any Type II plateau supernova has been observed in the far-ultraviolet revealing unprecedented characteristics. These three spectra are dominated by strong lines, primarily from metals, which contrasts with the featureless early optical spectra. The flux decreases over the initial time series as the ejecta cool and line blanketing takes effect. We model this unique data set with the non–local thermodynamic equilibrium radiation transport codeCMFGEN, finding a good match to the explosion of a low-mass red supergiant with energyEkin= 6 × 1050erg. With these models we identify, for the first time, the ions that dominate the early ultraviolet spectra. We present optical photometry and spectroscopy, showing that SN 2022acko has a peak absolute magnitude ofV= − 15.4 mag and plateau length of ∼115 days. The spectra closely resemble those of SN 2005cs and SN 2012A. Using the combined optical and ultraviolet spectra, we report the fraction of flux as a function of bluest wavelength on days 5, 7, and 19. We create a spectral time-series of Type II supernovae in the ultraviolet, demonstrating the rapid decline of flux over the first few weeks of evolution. Future observations of Type II supernovae are required to map out the landscape of exploding red supergiants, with and without circumstellar material, which is best revealed in high-quality ultraviolet spectra.more » « less
-
Abstract The element abundances of stars, particularly the refractory elements (e.g., Fe, Si, and Mg), play an important role in connecting stars to their planets. Most Sun-like stars do not have refractory abundance measurements since obtaining a large sample of high-resolution spectra is difficult with oversubscribed observing resources. In this work we infer abundances for C, N, O, Na, Mn, Cr, Si, Fe, Ni, Mg, V, Ca, Ti, Al, and Y for solar analogs with Gaia Radial Velocity Spectrometer (RVS) spectra (R= 11,200) usingTheCannon, a data-driven method. We train a linear model on a reference set of 34 stars observed by Gaia RVS with precise abundances measured from previous high-resolution spectroscopic efforts (R> 30,000–110,000). We then apply this model to several thousand Gaia RVS solar analogs. This yields abundances with average upper limit precisions of 0.04–0.1 dex for 17,412 stars, 50 of which are identified planet (candidate) hosts. We subsequently test the relative refractory depletion of these stars with increasing element condensation temperature compared to the Sun. The Sun remains refractory depleted compared to other Sun-like stars regardless of our current knowledge of the planets they host. This is inconsistent with theories of various types of planets locking up or sequestering refractories. Furthermore, we find no significant abundance differences between identified close-in giant planet hosts, giant planet hosts, and terrestrial/small planet hosts with the rest of the sample within our precision limits. This work demonstrates the utility of data-driven learning for future exoplanet composition and demographics studies.more » « less
-
Abstract We present the Keck Infrared Transient Survey, a NASA Key Strategic Mission Support program to obtain near-infrared (NIR) spectra of astrophysical transients of all types, and its first data release, consisting of 105 NIR spectra of 50 transients. Such a data set is essential as we enter a new era of IR astronomy with the James Webb Space Telescope (JWST) and the upcoming Nancy Grace Roman Space Telescope (Roman). NIR spectral templates will be essential to search JWST images for stellar explosions of the first stars and to plan an effective Roman SN Ia cosmology survey, both key science objectives for mission success. Between 2022 February and 2023 July, we systematically obtained 274 NIR spectra of 146 astronomical transients, representing a significant increase in the number of available NIR spectra in the literature. Here, we describe the first release of data from the 2022A semester. We systematically observed three samples: a flux-limited sample that includes all transients <17 mag in a red optical band (usually ZTFror ATLASobands); a volume-limited sample including all transients within redshiftz< 0.01 (D≈ 50 Mpc); and an SN Ia sample targeting objects at phases and light-curve parameters that had scant existing NIR data in the literature. The flux-limited sample is 39% complete (60% excluding SNe Ia), while the volume-limited sample is 54% complete and is 79% complete toz= 0.005. Transient classes observed include common Type Ia and core-collapse supernovae, tidal disruption events, luminous red novae, and the newly categorized hydrogen-free/helium-poor interacting Type Icn supernovae. We describe our observing procedures and data reduction usingPypeIt, which requires minimal human interaction to ensure reproducibility.more » « less
An official website of the United States government
