skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Sun Remains Relatively Refractory Depleted: Elemental Abundances for 17,412 Gaia RVS Solar Analogs and 50 Planet Hosts
Abstract The element abundances of stars, particularly the refractory elements (e.g., Fe, Si, and Mg), play an important role in connecting stars to their planets. Most Sun-like stars do not have refractory abundance measurements since obtaining a large sample of high-resolution spectra is difficult with oversubscribed observing resources. In this work we infer abundances for C, N, O, Na, Mn, Cr, Si, Fe, Ni, Mg, V, Ca, Ti, Al, and Y for solar analogs with Gaia Radial Velocity Spectrometer (RVS) spectra (R= 11,200) usingTheCannon, a data-driven method. We train a linear model on a reference set of 34 stars observed by Gaia RVS with precise abundances measured from previous high-resolution spectroscopic efforts (R> 30,000–110,000). We then apply this model to several thousand Gaia RVS solar analogs. This yields abundances with average upper limit precisions of 0.04–0.1 dex for 17,412 stars, 50 of which are identified planet (candidate) hosts. We subsequently test the relative refractory depletion of these stars with increasing element condensation temperature compared to the Sun. The Sun remains refractory depleted compared to other Sun-like stars regardless of our current knowledge of the planets they host. This is inconsistent with theories of various types of planets locking up or sequestering refractories. Furthermore, we find no significant abundance differences between identified close-in giant planet hosts, giant planet hosts, and terrestrial/small planet hosts with the rest of the sample within our precision limits. This work demonstrates the utility of data-driven learning for future exoplanet composition and demographics studies.  more » « less
Award ID(s):
2102591
PAR ID:
10562684
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
965
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
176
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We describe the discovery and characterization of TOI-7149 b, a 0.705 ± 0.075MJ, 1.18 ± 0.045RJgas giant on a ∼2.65 days period orbit transiting an M4V star with a mass of 0.344 ± 0.030Mand an effective temperature of 3363 ± 59 K. The planet was first discovered using NASA’s TESS mission, which we confirmed using a combination of ground-based photometry, radial velocities, and speckle imaging. The planet has one of the deepest transits of all known main-sequence planet hosts at ∼12% (Rp/R∼ 0.33). Pushing the bounds of previous discoveries of giant exoplanets around M-dwarf stars (GEMS), TOI-7149 is one of the lowest mass M-dwarfs to host a transiting giant planet. We compare the sample of transiting GEMS to stars within 200 pc with a Gaia color–magnitude diagram and find that the GEMS hosts are likely to be high metallicity stars. We also analyze the sample of transiting giant planets using the nonparametricMRExoframework to compare the bulk density of warm Jupiters across stellar masses. We confirm our previous result that transiting Jupiters around early M-dwarfs have similar masses and densities to warm Jupiters around FGK stars, and extend this to mid M-dwarfs, thereby suggesting a potential commonality in their formation mechanisms. 
    more » « less
  2. Abstract Chemical anomalies in planet-hosting stars (PHSs) are studied in order to assess how the planetary nature and multiplicity affect the atmospheric chemical abundances of their host stars. We employ APOGEE DR17 to select thin-disk stars of the Milky Way, and crossmatch them with the Kepler Input Catalog to identify confirmed PHSs, which results in 227 PHSs with available chemical abundance ratios for six refractory elements. We also examine an ensemble of stars without planet signals, which are equivalent to the selected PHSs in terms of evolutionary stage and stellar parameters, to correct for Galactic chemical evolution effects, and derive the abundance gradient of refractory elements over the condensation temperature for the PHSs. Using the Galactic chemical evolution corrected abundances, we find that our PHSs do not show a significant difference in abundance slope from the stars without planets. However, when we examine the trends of the refractory elements of PHSs, based on the total number of their planets and their planet types, we find that the PHSs with giant planets are more depleted in refractory elements than those with rocky planets. Among the PHSs with rocky planets, the refractory depletion trends are potentially correlated with the terrestrial planets’ radii and multiplicity. In the cases of PHSs with giant planets, sub-Jovian PHSs demonstrate more depleted refractory trends than stars hosting Jovian-mass planets, raising questions on different planetary formation processes for Neptune-like and Jupiter-like planets. 
    more » « less
  3. Abstract Dwarf galaxies like Sagittarius (Sgr) provide a unique window into the early stages of galactic chemical evolution, particularly through their metal-poor stars. By studying the chemical abundances of stars in the Sgr core and tidal streams, we can gain insights into the assembly history of this galaxy and its early heavy element nucleosynthesis processes. We efficiently selected extremely metal-poor candidates in the core and streams for high-resolution spectroscopic analysis using metallicity-sensitive photometry from SkyMapper DR2 and Gaia DR3 XP spectra, and proper motions. We present a sample of 37 Sgr stars with detailed chemical abundances, of which we identify 10 extremely metal-poor ([Fe/H] ≤ −3.0) stars, 25 very metal-poor ([Fe/H] ≤ −2.0) stars, and two metal-poor ([Fe/H] ≤ −1.0) stars. This sample increases the number of extremely metal-poor Sgr stars analyzed with high-resolution spectroscopy by a factor of 5. Of these stars, 15 are identified as members of the Sgr tidal stream, while the remaining 22 are associated with the core. We derive abundances for up to 20 elements and identify no statistically significant differences between the element abundance patterns across the core and stream samples. Intriguingly, we identify stars that may have formed in ultrafaint dwarf galaxies that accreted onto Sgr, in addition to patterns of C andr-process elements distinct from the Milky Way halo. Over half of the sample shows a neutron-capture element abundance pattern consistent with the scaled solar purer-process pattern, indicating earlyr-process enrichment in the Sgr progenitor. 
    more » « less
  4. null (Ed.)
    Context. NGC 6522 is a moderately metal-poor bulge globular cluster ([Fe/H]∼−1.0), and it is a well-studied representative among a number of moderately metal-poor blue horizontal branch clusters located in the bulge. The NGC 6522 abundance pattern can give hints on the earliest chemical enrichment in the central Galaxy. Aims. The aim of this study is to derive abundances of the light elements C and N; alpha elements O, Mg, Si, Ca, and Ti; odd-Z elements Na and Al; neutron-capture elements Y, Zr, Ba, La, and Nd; and the r-process element Eu. We verify if there are first- and second-generation stars: we find clear evidence of Na-Al, Na-N, and Mg-Al correlations, while we cannot identify the Na-O anti-correlation from our data. Methods. High-resolution spectra of six red giants in the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with both the UVES and GIRAFFE spectrographs in FLAMES+UVES configuration. In light of Gaia data, it turned out that two of them are non-members, but these were also analysed. Spectroscopic parameters were derived through the excitation and ionisation equilibrium of Fe i and Fe ii lines from UVES spectra. The abundances were obtained with spectrum synthesis. Comparisons of abundances derived from UVES and GIRAFFE spectra were carried out. Results. The present analysis combined with previous UVES results gives a mean radial velocity of vhel = −15.62±7.7 km s−1 and a r metallicity of [Fe/H] = −1.05±0.20 for NGC 6522. Mean abundances of alpha elements for the present four member stars are enhanced with [O/Fe]=+0.38, [Mg/Fe]=≈+0.28, [Si/Fe]≈+0.19, and [Ca/Fe]≈+0.13, together with the iron-peak element [Ti/Fe]≈+0.13, and the r-process element [Eu/Fe]=+0.40. The neutron-capture elements Y, Zr, Ba, and La show enhancements in the +0.08 < [Y/Fe] < +0.90, 0.11 < [Zr/Fe] < +0.50, 0.00 < [Ba/Fe] < +0.63, 0.00 < [La/Fe] < +0.45, and -0.10 < [Nd/Fe] < +0.70 ranges. We also discuss the spread in heavy-element abundances. 
    more » « less
  5. Context. NGC 6522 is a moderately metal-poor bulge globular cluster ([Fe/H] ~ −1.0), and it is a well-studied representative among a number of moderately metal-poor blue horizontal branch clusters located in the bulge. The NGC 6522 abundance pattern can give hints on the earliest chemical enrichment in the central Galaxy. Aims. The aim of this study is to derive abundances of the light elements C and N; alpha elements O, Mg, Si, Ca, and Ti; odd-Z elements Na and Al; neutron-capture elements Y, Zr, Ba, La, and Nd; and the r -process element Eu. We verify if there are first- and second-generation stars: we find clear evidence of Na–Al, Na–N, and Mg–Al correlations, while we cannot identify the Na–O anti-correlation from our data. Methods. High-resolution spectra of six red giants in the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with both the UVES and GIRAFFE spectrographs in FLAMES+UVES configuration. In light of Gaia data, it turned out that two of them are non-members, but these were also analysed. Spectroscopic parameters were derived through the excitation and ionisation equilibrium of Fe  I and Fe  II lines from UVES spectra. The abundances were obtained with spectrum synthesis. Comparisons of abundances derived from UVES and GIRAFFE spectra were carried out. Results. The present analysis combined with previous UVES results gives a mean radial velocity of v r hel = −15.62±7.7 km s −1 and a metallicity of [Fe/H] = −1.05 ± 0.20 for NGC 6522. Mean abundances of alpha elements for the present four member stars are enhanced with [O/Fe] = +0.38, [Mg/Fe] = ≈+0.28, [Si/Fe] ≈ +0.19, and [Ca/Fe] ≈ +0.13, together with the iron-peak element [Ti/Fe] ≈ +0.13, and the r -process element [Eu/Fe] = +0.40. The neutron-capture elements Y, Zr, Ba, and La show enhancements in the +0.08 < [Y/Fe] < +0.90, 0.11 < [Zr/Fe] < +0.50, 0.00 < [Ba/Fe] < +0.63, 0.00 < [La/Fe] < +0.45, and −0.10 < [Nd/Fe] < +0.70 ranges. We also discuss the spread in heavy-element abundances. 
    more » « less