Abstract To better understand how normal stress heterogeneity affects earthquake rupture, we conducted laboratory experiments on a 760 mm poly (methyl‐mathacrylate) PMMA sample with a 25 mm “bump” of locally higher normal stress (∆σbt). We systematically varied the sample‐average normal stress () and bump prominence (). For bumps with lower prominence () the rupture simply propagated through the bump and produced regular sequences of periodic stick‐slip events. Bumps with higher prominence () produced complex rupture sequences with variable timing and ruptures sizes, and this complexity persisted for multiple stick‐slip supercycles. During some events, the bump remained locked and acted as a barrier that completely stopped rupture. In other events, a dynamic rupture front terminated at the locked bump, but rupture reinitiated on the other side of the bump after a brief pause of 0.3–1 ms. Only when stress on the bump was near critical did the bump slip and unload built up strain energy in one large event. Thus, a sufficiently prominent bump acted as a barrier (energy sink) when it was far from critically stressed and as an asperity (energy source) when it was near critically stressed. Similar to an earthquake gate, the bump never acted as a permanent barrier. In the experiments, we resolve the above rupture interactions with a bump as separate rupture phases; however, when observed through the lens of seismology, it may appear as one continuous rupture that speeds up and slows down. The complicated rupture‐bump interactions also produced enhanced high frequency seismic waves recorded with piezoelectric sensors.
more »
« less
Laboratory Earthquake Ruptures Contained by Velocity Strengthening Fault Patches
Abstract Many natural faults are believed to consist of velocity weakening (VW) patches surrounded by velocity strengthening (VS) sections. Numerical studies routinely employ this framework to study earthquake sequences including repeating earthquakes. In this laboratory study, we made a VW asperity, of lengthL, from a bare Poly(methyl methacrylate) PMMA frictional interface and coated the surrounding interface with Teflon to make VS fault sections. Behavior of this isolated asperity was studied as a function ofL(ranging from 100 to 400 mm) and the critical nucleation length, , which is inversely proportional to the applied normal stress (2–16 MPa). Consistent with recent numerical simulations, we observed aseismic slip for < 2, periodic slip for 2 < < 6, and non‐periodic slip for 10 < . Furthermore, we compared the experiments whereLwas contained by VS material to standard stick‐slip events whereLwas bounded by free surfaces (i.e.,L = the total sample length). The free surface case produced ∼10 times larger slip during stick‐slip events compared to the contained fault ruptures, even with identical . This disparity highlights how standard, complete‐rupture stick‐slip events differ from contained events expected in nature, due to both the free surface conditions and the heterogeneous normal stress along the fault near the free ends, as confirmed by Digital Image Correlation analysis. This study not only introduces the Teflon coating experimental technique for containing laboratory earthquake ruptures, but also highlights the utility of as a predictive parameter for earthquake behavior.
more »
« less
- Award ID(s):
- 2240375
- PAR ID:
- 10578122
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 129
- Issue:
- 4
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Seismic moment and rupture length can be combined to infer stress drop, a key parameter for assessing earthquakes. In natural earthquakes, stress drops are largely depth‐independent, which is surprising given the expected dependence of frictional stress on normal stresses and hence overburden. We have developed a transparent experimental fault that allows direct observation of thousands of slip events, with ruptures that are fully contained within the fault. Surprisingly, the observed stress drops are largely independent of both the magnitude of normal stress and its heterogeneity, capturing the independence seen in nature. However, we observe larger, normal stress‐dependent stress drops when the fault area is reduced, which allows slip events to frequently reach the edge of the interface. We conclude that confined ruptures have normal stress independent stress drops, and thus the depth‐independent stress drops of tectonic earthquakes may be a consequence of their confined nature.more » « less
-
The temporal variation of elastic property of the bulk material surrounding the fault is considered an important contribution to the observed co-seismic velocity reduction and interseismic healing. Paglialunga et al. [2021] found that as fault normal stress increases, co-seismic velocity reduction becomes larger because more cracks reopen with higher stress drops. Larger normal stress can lead to smaller nucleation size and contribute to larger co-seismic slip. By contrast, with larger co-seismic velocity reduction and interseismic healing, more slow slip events can propagate in the seismogenic zone [Thakur and Huang, 2021], because the temporal velocity change related to fault zone damage modulates earthquake nucleation. Hence, fault normal stress and temporal damage zone structure evolution have opposite influences on the spatial distribution and recurrence intervals of earthquakes. We conducted 2-D anti-plane fully-dynamic seismic cycle simulations and explored the effects of fault normal stress on seismic cycle when there is coseismic damage and interseismic healing in the fault damage zone. The normal stress is in a range of 40-70 MPa and the co-seismic rigidity reduction is in a range of 5-8%. We find larger normal stress results in larger co-seismic slip and fewer slow slip events, while more co-seismic velocity reduction and interseismic healing leads to more partial ruptures as well as slow slip events. With the increase of both normal stress and seismic velocity change, more regular earthquakes occur and slow slip events gradually disappear. For the selected parameter space, the influence of seismic velocity change is not as significant as the effect of normal stress. However, fault zone maturity or the initial rigidity of fault damage zones should also affect the competitive relationship between normal stress and seismic velocity change, and we will characterize earthquakes and slow-slip events in immature and mature fault damage zones when both on-fault normal stress and off-fault seismic velocity vary over earthquake cycles.more » « less
-
Abstract Localized frictional sliding on faults in the continental crust transitions at depth to distributed deformation in viscous shear zones. This brittle‐ductile transition (BDT), and/or the transition from velocity‐weakening (VW) to velocity‐strengthening (VS) friction, are controlled by the lithospheric thermal structure and composition. Here, we investigate these transitions, and their effect on the depth extent of earthquakes, using 2D antiplane shear simulations of a strike‐slip fault with rate‐and‐state friction. The off‐fault material is viscoelastic, with temperature‐dependent dislocation creep. We solve the heat equation for temperature, accounting for frictional and viscous shear heating that creates a thermal anomaly relative to the ambient geotherm which reduces viscosity and facilitates viscous flow. We explore several geotherms and effective normal stress distributions (by changing pore pressure), quantifying the thermal anomaly, seismic and aseismic slip, and the transition from frictional sliding to viscous flow. The thermal anomaly can reach several hundred degrees below the seismogenic zone in models with hydrostatic pressure but is smaller for higher pressure (and these high‐pressure models are most consistent with San Andreas Fault heat flow constraints). Shear heating raises the BDT, sometimes to where it limits rupture depth rather than the frictional VW‐to‐VS transition. Our thermomechanical modeling framework can be used to evaluate lithospheric rheology and thermal models through predictions of earthquake ruptures, postseismic and interseismic crustal deformation, heat flow, and the geological structures that reflect the complex deformation beneath faults.more » « less
-
Abstract Tectonic faults fail through a spectrum of slip modes, ranging from slow aseismic creep to rapid slip during earthquakes. Understanding the seismic radiation emitted during these slip modes is key for advancing earthquake science and earthquake hazard assessment. In this work, we use laboratory friction experiments instrumented with ultrasonic sensors to document the seismic radiation properties of slow and fast laboratory earthquakes. Stick‐slip experiments were conducted at a constant loading rate of 8 μm/s and the normal stress was systematically increased from 7 to 15 MPa. We produced a full spectrum of slip modes by modulating the loading stiffness in tandem with the fault zone normal stress. Acoustic emission data were recorded continuously at 5 MHz. We demonstrate that the full continuum of slip modes radiate measurable high‐frequency energy between 100 and 500 kHz, including the slowest events that have peak fault slip rates <100 μm/s. The peak amplitude of the high‐frequency time‐domain signals scales systematically with fault slip velocity. Stable sliding experiments further support the connection between fault slip rate and high‐frequency radiation. Experiments demonstrate that the origin of the high‐frequency energy is fundamentally linked to changes in fault slip rate, shear strain, and breaking of contact junctions within the fault gouge. Our results suggest that having measurements close to the fault zone may be key for documenting seismic radiation properties and fully understanding the connection between different slip modes.more » « less