A constraint satisfaction problem (CSP),\(\textsf {Max-CSP}(\mathcal {F})\), is specified by a finite set of constraints\(\mathcal {F}\subseteq \lbrace [q]^k \rightarrow \lbrace 0,1\rbrace \rbrace\)for positive integersqandk. An instance of the problem onnvariables is given bymapplications of constraints from\(\mathcal {F}\)to subsequences of thenvariables, and the goal is to find an assignment to the variables that satisfies the maximum number of constraints. In the (γ ,β)-approximation version of the problem for parameters 0 ≤ β ≤ γ ≤ 1, the goal is to distinguish instances where at least γ fraction of the constraints can be satisfied from instances where at most β fraction of the constraints can be satisfied. In this work, we consider the approximability of this problem in the context of sketching algorithms and give a dichotomy result. Specifically, for every family\(\mathcal {F}\)and every β < γ, we show that either a linear sketching algorithm solves the problem in polylogarithmic space or the problem is not solvable by any sketching algorithm in\(o(\sqrt {n})\)space. In particular, we give non-trivial approximation algorithms using polylogarithmic space for infinitely many constraint satisfaction problems. We also extend previously known lower bounds for general streaming algorithms to a wide variety of problems, and in particular the case ofq=k=2, where we get a dichotomy, and the case when the satisfying assignments of the constraints of\(\mathcal {F}\)support a distribution on\([q]^k\)with uniform marginals. Prior to this work, other than sporadic examples, the only systematic classes of CSPs that were analyzed considered the setting of Boolean variablesq= 2, binary constraintsk=2, and singleton families\(|\mathcal {F}|=1\)and only considered the setting where constraints are placed on literals rather than variables. Our positive results show wide applicability of bias-based algorithms used previously by [47] and [41], which we extend to include richer norm estimation algorithms, by giving a systematic way to discover biases. Our negative results combine the Fourier analytic methods of [56], which we extend to a wider class of CSPs, with a rich collection of reductions among communication complexity problems that lie at the heart of the negative results. In particular, previous works used Fourier analysis over the Boolean cube to initiate their results and the results seemed particularly tailored to functions on Boolean literals (i.e., with negations). Our techniques surprisingly allow us to get to generalq-ary CSPs without negations by appealing to the same Fourier analytic starting point over Boolean hypercubes. 
                        more » 
                        « less   
                    This content will become publicly available on March 31, 2026
                            
                            Stochastic Optimization and Learning for Two-Stage Supplier Problems
                        
                    
    
            The main focus of this article is radius-based (supplier) clustering in the two-stage stochastic setting with recourse, where the inherent stochasticity of the model comes in the form of a budget constraint. In addition to the standard (homogeneous) setting where all clients must be within a distance\(R\)of the nearest facility, we provide results for the more general problem where the radius demands may beinhomogeneous(i.e., different for each client). We also explore a number of variants where additional constraints are imposed on the first-stage decisions, specifically matroid and multi-knapsack constraints, and provide results for these settings. We derive results for the most general distributional setting, where there is only black-box access to the underlying distribution. To accomplish this, we first develop algorithms for thepolynomial scenariossetting; we then employ a novelscenario-discardingvariant of the standardSample Average Approximationmethod, which crucially exploits properties of the restricted-case algorithms. We note that the scenario-discarding modification to the SAA method is necessary to optimize over the radius. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10578170
- Publisher / Repository:
- Association for Computing Machinery (ACM)
- Date Published:
- Journal Name:
- ACM Transactions on Probabilistic Machine Learning
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 2836-8924
- Page Range / eLocation ID:
- 1 to 20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract An ordering constraint satisfaction problem (OCSP) is defined by a family$$\mathcal F$$ of predicates mapping permutations on$$\{1,\ldots,k\}$$ to$$\{0,1\}$$ . An instance of ($$\mathcal F$$ ) onnvariables consists of a list of constraints, each consisting of a predicate from$$\mathcal F$$ applied onkdistinct variables. The goal is to find an ordering of thenvariables that maximizes the number of constraints for which the induced ordering on thekvariables satisfies the predicate. OCSPs capture well-studied problems including ‘maximum acyclic subgraph’ () and “maximum betweenness”. In this work, we consider the task of approximating the maximum number of satisfiable constraints in the (single-pass) streaming setting, when an instance is presented as a stream of constraints. We show that for every$$\mathcal F$$ , ($$\mathcal F$$ ) is approximation-resistant to o(n)-space streaming algorithms, i.e., algorithms using o(n) space cannot distinguish streams where almost every constraint is satisfiable from streams where no ordering beats the random ordering by a noticeable amount. This space bound is tight up to polylogarithmic factors. In the case of , our result shows that for every$$\epsilon>0$$ , is not$$(1/2+\epsilon)$$ -approximable in o(n) space. The previous best inapproximability result, due to Guruswami & Tao (2019), only ruled out 3/4-approximations in$$o(\sqrt n)$$ space. Our results build on recent works of Chou et al. (2022b, 2024) who provide a tight, linear-space inapproximability theorem for a broad class of “standard” (i.e., non-ordering) constraint satisfaction problems (CSPs) over arbitrary (finite) alphabets. Our results are obtained by building a family of appropriate standard CSPs (one for every alphabet sizeq) from any given OCSP and applying their theorem to this family of CSPs. To convert the resulting hardness results for standard CSPs back to our OCSP, we show that the hard instances from this earlier theorem have the following “partition expansion” property with high probability: For every partition of thenvariables into small blocks, for most of the constraints, all variables are in distinct blocks.more » « less
- 
            Abstract In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization withnon-Lipschitzianvalue functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient is a new type of cuts based on generalized conjugacy. Several interesting classes of MS-MINLP are identified, where the new algorithms are guaranteed to obtain the global optimum without the assumption of complete recourse. This significantly generalizes the classic SDDP algorithms. We also characterize the iteration complexity of the proposed algorithms. In particular, for a$$(T+1)$$ -stage stochastic MINLP satisfyingL-exact Lipschitz regularization withd-dimensional state spaces, to obtain an$$\varepsilon $$ -optimal root node solution, we prove that the number of iterations of the proposed deterministic sampling algorithm is upper bounded by$${\mathcal {O}}((\frac{2LT}{\varepsilon })^d)$$ , and is lower bounded by$${\mathcal {O}}((\frac{LT}{4\varepsilon })^d)$$ for the general case or by$${\mathcal {O}}((\frac{LT}{8\varepsilon })^{d/2-1})$$ for the convex case. This shows that the obtained complexity bounds are rather sharp. It also reveals that the iteration complexity dependspolynomiallyon the number of stages. We further show that the iteration complexity dependslinearlyonT, if all the state spaces are finite sets, or if we seek a$$(T\varepsilon )$$ -optimal solution when the state spaces are infinite sets, i.e. allowing the optimality gap to scale withT. To the best of our knowledge, this is the first work that reports global optimization algorithms as well as iteration complexity results for solving such a large class of multistage stochastic programs. The iteration complexity study resolves a conjecture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic mixed-integer optimization.more » « less
- 
            Abstract As the use of spectral/hpelement methods, and high-order finite element methods in general, continues to spread, community efforts to create efficient, optimized algorithms associated with fundamental high-order operations have grown. Core tasks such as solution expansion evaluation at quadrature points, stiffness and mass matrix generation, and matrix assembly have received tremendous attention. With the expansion of the types of problems to which high-order methods are applied, and correspondingly the growth in types of numerical tasks accomplished through high-order methods, the number and types of these core operations broaden. This work focuses on solution expansion evaluation at arbitrary points within an element. This operation is core to many postprocessing applications such as evaluation of streamlines and pathlines, as well as to field projection techniques such as mortaring. We expand barycentric interpolation techniques developed on an interval to 2D (triangles and quadrilaterals) and 3D (tetrahedra, prisms, pyramids, and hexahedra) spectral/hpelement methods. We provide efficient algorithms for their implementations, and demonstrate their effectiveness using the spectral/hpelement libraryNektar++by running a series of baseline evaluations against the ‘standard’ Lagrangian method, where an interpolation matrix is generated and matrix-multiplication applied to evaluate a point at a given location. We present results from a rigorous series of benchmarking tests for a variety of element shapes, polynomial orders and dimensions. We show that when the point of interest is to be repeatedly evaluated, the barycentric method performs at worst$$50\%$$ slower, when compared to a cached matrix evaluation. However, when the point of interest changes repeatedly so that the interpolation matrix must be regenerated in the ‘standard’ approach, the barycentric method yields far greater performance, with a minimum speedup factor of$$7\times $$ . Furthermore, when derivatives of the solution evaluation are also required, the barycentric method in general slightly outperforms the cached interpolation matrix method across all elements and orders, with an up to$$30\%$$ speedup. Finally we investigate a real-world example of scalar transport using a non-conformal discontinuous Galerkin simulation, in which we observe around$$6\times $$ speedup in computational time for the barycentric method compared to the matrix-based approach. We also explore the complexity of both interpolation methods and show that the barycentric interpolation method requires$${\mathcal {O}}(k)$$ storage compared to a best case space complexity of$${\mathcal {O}}(k^2)$$ for the Lagrangian interpolation matrix method.more » « less
- 
            In this article, we show how a single function,join, can be used to implement parallelbalanced binary search trees(BSTs) simply and efficiently. Based onjoin, our approach applies to multiple balanced tree data structures, and a variety of functions for ordered sets and maps. We describe our technique as an algorithmic framework calledjoin-based algorithms. We show that thejoinfunction fully captures what is needed for rebalancing trees for a variety of tree algorithms, as long as the balancing scheme satisfies certain properties, which we refer to asjoinabletrees. We discuss four balancing schemes that are joinable: AVL trees, red-black trees, weight-balanced trees, and treaps. We present a variety of tree algorithms that apply to joinable trees, includinginsert,delete,union,intersection,difference,split,range,filter, and so on, most of them also parallel. These algorithms are generic across balancing schemes. Many algorithms are optimal in the comparison model, and we provide a general proof to show the efficiency in work for joinable trees. The algorithms are highly parallel, all with polylogarithmic span (parallel dependence). Specifically, the set-set operationsunion,intersection, anddifferencehave work\( O(m\log (\frac{n}{m}+1)) \)and polylogarithmic span for input set sizes\( n \)and\( m\le n \). We implemented and tested our algorithms on the four balancing schemes. In general, all four schemes have quite similar performance, but the weight-balanced tree slightly outperforms the others. They have the same speedup characteristics, getting around 73\( \times \)speedup on 72 cores (144 hyperthreads). Experimental results also show that our implementation outperforms existing parallel implementations, and our sequential version achieves close or much better performance than the sequential merging algorithm in C++ Standard Template Library (STL) on various input sizes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
