Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In bipartite matching problems, vertices on one side of a bipartite graph are paired with those on the other. In its online variant, one side of the graph is available offline, while the vertices on the other side arrive online. When a vertex arrives, an irrevocable and immediate decision should be made by the algorithm; either match it to an available vertex or drop it. Examples of such problems include matching workers to firms, advertisers to keywords, organs to patients, and so on. Much of the literature focuses on maximizing the total relevance—modeled via total weight—of the matching. However, in many real-world problems, it is also important to consider contributions of diversity: hiring a diverse pool of candidates, displaying a relevant but diverse set of ads, and so on. In this paper, we propose the Online Submodular Bipartite Matching (OSBM) problem, where the goal is to maximize a submodular function f over the set of matched edges. This objective is general enough to capture the notion of both diversity (e.g., a weighted coverage function) and relevance (e.g., the traditional linear function)—as well as many other natural objective functions occurring in practice (e.g., limited total budget in advertising settings). We proposemore »
-
Online bipartite matching and allocation models are widely used to analyze and design markets such as Internet advertising, online labor, and crowdsourcing. Traditionally, vertices on one side of the market are fixed and known a priori, while vertices on the other side arrive online and are matched by a central agent to the offline side. The issue of possible conflicts among offline agents emerges in various real scenarios when we need to match each online agent with a set of offline agents. For example, in event-based social networks (e.g., Meetup), offline events conflict for some users since they will be unable to attend mutually-distant events at proximate times; in advertising markets, two competing firms may prefer not to be shown to one user simultaneously; and in online recommendation systems (e.g., Amazon Books), books of the same type “conflict” with each other in some sense due to the diversity requirement for each online buyer. The conflict nature inherent among certain offline agents raises significant challenges in both modeling and online algorithm design. In this paper, we propose a unifying model, generalizing the conflict models proposed in (She et al., TKDE 2016) and (Chen et al., TKDE 16). Our model can capturemore »