Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The main focus of this article is radius-based (supplier) clustering in the two-stage stochastic setting with recourse, where the inherent stochasticity of the model comes in the form of a budget constraint. In addition to the standard (homogeneous) setting where all clients must be within a distance\(R\)of the nearest facility, we provide results for the more general problem where the radius demands may beinhomogeneous(i.e., different for each client). We also explore a number of variants where additional constraints are imposed on the first-stage decisions, specifically matroid and multi-knapsack constraints, and provide results for these settings. We derive results for the most general distributional setting, where there is only black-box access to the underlying distribution. To accomplish this, we first develop algorithms for thepolynomial scenariossetting; we then employ a novelscenario-discardingvariant of the standardSample Average Approximationmethod, which crucially exploits properties of the restricted-case algorithms. We note that the scenario-discarding modification to the SAA method is necessary to optimize over the radius.more » « lessFree, publicly-accessible full text available March 31, 2026
- 
            Online bipartite matching and allocation models are widely used to analyze and design markets such as Internet advertising, online labor, and crowdsourcing. Traditionally, vertices on one side of the market are fixed and known a priori, while vertices on the other side arrive online and are matched by a central agent to the offline side. The issue of possible conflicts among offline agents emerges in various real scenarios when we need to match each online agent with a set of offline agents. For example, in event-based social networks (e.g., Meetup), offline events conflict for some users since they will be unable to attend mutually-distant events at proximate times; in advertising markets, two competing firms may prefer not to be shown to one user simultaneously; and in online recommendation systems (e.g., Amazon Books), books of the same type “conflict” with each other in some sense due to the diversity requirement for each online buyer. The conflict nature inherent among certain offline agents raises significant challenges in both modeling and online algorithm design. In this paper, we propose a unifying model, generalizing the conflict models proposed in (She et al., TKDE 2016) and (Chen et al., TKDE 16). Our model can capture not only a broad class of conflict constraints on the offline side (which is even allowed to be sensitive to each online agent), but also allows a general arrival pattern for the online side (which is allowed to change over the online phase). We propose an efficient linear programming (LP) based online algorithm and prove theoretically that it has nearly-optimal online performance. Additionally, we propose two LP-based heuristics and test them against two natural baselines on both real and synthetic datasets. Our LP-based heuristics experimentally dominate the baseline algorithms, aligning with our theoretical predictions and supporting our unified approach.more » « less
- 
            Matching markets with historical data are abundant in many applications, e.g., matching candidates to jobs in hiring, workers to tasks in crowdsourcing markets, and jobs to servers in cloud services. In all these applications, a match consumes one or more shared and limited resources and the goal is to best utilize these to maximize a global objective. Additionally, one often has historical data and hence some statistics (usually first-order moments) of the arriving agents (e.g., candidates, workers, and jobs) can be learnt. To model these scenarios, we propose a unifying framework, called Multi- Budgeted Online Assignment with Known Adversarial Distributions. In this model,we have a set of offline servers with different deadlines and a set of online job types. At each time, a job of type j arrives. Assigning this job to a server i yields a profit w(i, j) while consuming a(i,j) -- a vector lying in [0, 1]^K -- quantities of distinct resources. The goal is to design an (online) assignment policy that maximizes the total expected profit without violating the (hard) budget constraint. We propose and theoretically analyze two linear programming (LP) based algorithms which are almost optimal among all LP-based approaches. We also propose several heuristics adapted from our algorithms and compare them to other LP-agnostic algorithms using both synthetic as well as real-time cloud scheduling and public safety datasets. Experimental results show that our proposed algorithms are effective and significantly out-perform the baselines. Moreover, we show empirically the trade-off between fairness and efficiency of our algorithms which does well even on fairness metrics without explicitly optimizing for it.more » « less
- 
            In bipartite matching problems, vertices on one side of a bipartite graph are paired with those on the other. In its online variant, one side of the graph is available offline, while the vertices on the other side arrive online. When a vertex arrives, an irrevocable and immediate decision should be made by the algorithm; either match it to an available vertex or drop it. Examples of such problems include matching workers to firms, advertisers to keywords, organs to patients, and so on. Much of the literature focuses on maximizing the total relevance—modeled via total weight—of the matching. However, in many real-world problems, it is also important to consider contributions of diversity: hiring a diverse pool of candidates, displaying a relevant but diverse set of ads, and so on. In this paper, we propose the Online Submodular Bipartite Matching (OSBM) problem, where the goal is to maximize a submodular function f over the set of matched edges. This objective is general enough to capture the notion of both diversity (e.g., a weighted coverage function) and relevance (e.g., the traditional linear function)—as well as many other natural objective functions occurring in practice (e.g., limited total budget in advertising settings). We propose novel algorithms that have provable guarantees and are essentially optimal when restricted to various special cases. We also run experiments on real-world and synthetic datasets to validate our algorithms.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available