skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DARTS: Multi-year database of AI detected retrogressive thaw slumps (RTS) in hotspots of the circum-arctic permafrost region - v1.1
This dataset, called DARTS, comprises footprints of retrogressive thaw slump (RTS) identified and quantified using an automated deep learning approach in RTS hotspots across the Arctic and Subarctic permafrost regions. We utilized multispectral PlanetScope imagery with a spatial resolution of ~3 meters (m), complemented by ArcticDEM (Digital Elevation Model) and derived datasets, including slope, relative elevation, and Landsat-derived change trends. The dataset covers an area of 1.6 million square-kilometers (km²), with at least one coverage between 2021 and 2023, and provides annual coverage for approximately 900,000 km². In several highly active key sites, such as Banks Island, Peel Plateau, and Novaya Zemlya, we extended the data frequency and temporal coverage to 2018-2023. We mapped a total of more than 43,000 individual RTS and ALD, many of them multiple times. We offer two levels of datasets; Level 1: RTS footprints per image with timestamps; and Level 2: annually aggregated RTS footprints. Essential metadata includes image footprints, dataset coverage, timestamps, and model-specific information. To enhance reproducibility and further use, the training labels, processing code, and model checkpoints are publicly available. This version, v1.1, is the revised first openly accessible release. The dataset will be maintained and continuously updated in both spatial and temporal extent. It can be used for mapping and quantifying RTS, analyzing spatio-temporal patterns of RTS dynamics, or serving as input for landscape dynamics models.  more » « less
Award ID(s):
1927720
PAR ID:
10578184
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
permafrost remote sensing retrogressive thaw slumps thermokarst erosion landslides arctic cryosphere active layer detachment slides RTS ALD deep learning artificial intelligence
Format(s):
Medium: X Other: text/xml
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset, called DARTS, comprises footprints of retrogressive thaw slump (RTS) and active layer detachments slides (ALD) identified and quantified using an automated deep learning approach in RTS hotspots across the Arctic and Subarctic permafrost regions. We utilized multispectral PlanetScope imagery with a spatial resolution of 3 meters (m), complemented by ArcticDEM (Digital Elevation Models) and derived datasets, including slope, relative elevation, and Landsat-derived change trends. The dataset covers an area of 1.6 million square-kilometers (km²), with at least one coverage between 2021 and 2023, and provides annual coverage for approximately 900,000 km². In several highly active key sites, such as Banks Island, Peel Plateau, and Novaya Zemlya, we extended the data frequency and temporal coverage to 2018-2023. We mapped a total of more than 43,000 individual RTS and ALD, many of them multiple times. We offer two levels of datasets; Level 1: RTS footprints per image with timestamps; and Level 2: annually aggregated RTS footprints. Essential metadata includes image footprints, dataset coverage, timestamps, and model-specific information. To enhance reproducibility and further use, the training labels, processing code, and model checkpoints are publicly available. This version, v1, is the first openly accessible release. The dataset will be maintained and continuously updated in both spatial and temporal extent. It can be used for mapping and quantifying RTS, analyzing spatio-temporal patterns of RTS dynamics, or serving as input for landscape dynamics models. 
    more » « less
  2. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) produced a wealth of observational data along the drift of the R/V Polarstern in the Arctic Ocean from October 2019 to September 2020. These data can further process-level understanding and improvements in models. However, the observational records contain temporal gaps and are provided in different formats. One goal of the MOSAiC Single Column Model Working Group (MSCMWG: https://mosaic-expedition.org/science/cross-cutting_groups/) is to provide consistently-formatted, gap-filled, merged datasets representing the conditions at the MOSAiC Central Observatory (the intensively studied region within a few km of R/V Polarstern) that are suitable for driving models on this spatial domain (e.g., single column models, large eddy simulations, etc). The MSCMWG is an open group, please contact the dataset creators if you would like to contribute to future versions of these merged datasets (including new variables). This dataset contains version 1 of these merged datasets, and comprises the variables necessary to force a single column ice model (e.g., Icepack: https://zenodo.org/doi/10.5281/zenodo.1213462). The atmospheric variables are primarily derived from Met City (~66 percent (%) of record, https://doi.org/10.18739/A2PV6B83F), with temporal gaps filled by bias and advection corrected data from Atmospheric Surface Flux Stations ( https://doi.org/10.18739/A2XD0R00S, https://doi.org/10.18739/A25X25F0P, https://doi.org/10.18739/A2FF3M18K). Some residual gaps in shortwave radiation were filled with ARM ship-board radiometer data. Three different options for snowfall precipitation rate (prsn) are provided, based on in-situ observations that precipitation greatly exceeded accumulation on level ice, and accumulation rates varied on different ice types. MOSAiC_kazr_snow_MDF_20191005_20201001.nc uses 'snowfall_rate1' derived from the vertically-pointing, ka-band radar on the vessel (https://doi.org/10.5439/1853942). MOSAiC_Raphael_snow_fyi_MDF_20191005_20201001.nc and MOSAiC_Raphael_snow_syi_MDF_20191005_20201001.nc use snow accumulation measurements from manual mass balance sites (https://doi.org/10.18739/A2NK36626) to derived a pseudo-precipitation. MOSAiC_Raphael_snow_fyi_MDF_20191005_20201001.nc is based on the First Year Ice (fyi) sites. MOSAiC_Raphael_snow_syi_MDF_20191005_20201001.nc is based on the Second Year Ice (syi) sites. The other atmospheric variables for these files are identical. Oceanic variables are in MOSAiC_ocn_MDF_20191006_20200919.nc and are derived from https://doi.org/10.18739/A21J9790B. The data are netCDF files formatted according to the Merged Data File format (https://doi.org/10.5194/egusphere-2023-2413, https://gitlab.com/mdf-makers/mdf-toolkit). The code 'recipes' that were used to produce these data are available at: https://doi.org/10.5281/zenodo.10819497. If you use these datasets, please also cite the appropriate publications: Meteorological variables (excluding precipitation): Cox et al., 2023 (https://doi.org/10.1038/s41597-023-02415-5) Oceanographic variables: Schulz et al., 2023 (https://doi.org/10.31223/X5TT2W) KAZR-derived precipitation: Matrosov et al., 2022 (https://doi.org/10.1525/elementa.2021.00101) Accumulation-derived pseudo-precipitation: Raphael et al., in review. The following are known issues that will be addressed in future dataset releases: 1. Residual gaps occupy approximately 20% of the data record (see addendum) 2. Some transitions to shiprad downwelling shortwave are unreasonable abrupt 3. MDF format does not currently include a field for point-by-point data source Addendum: For atmospheric variables, below indicates the percentage sourced from each dataset (and the amount missing a.k.a NaN) Air Temperature metcity 0.661943 NaN 0.193333 asfs30 0.134910 asfs40 0.008607 asfs50 0.001207 Specific Humidity metcity 0.658890 NaN 0.196298 asfs40 0.008695 Wind Velocity metcity 0.666334 NaN 0.255003 asfs30 0.068828 asfs40 0.008630 asfs50 0.001205 Downwelling Longwave metcity 0.549417 asfs30 0.241502 NaN 0.209081 Downwelling Shortwave metcity 0.674166 NaN 0.158814 asfs30 0.140794 shipradS1 0.026226 Note that the 21 day gap from the end of Central Observatory 2 to the start of Central Observatory 3 occupies 5.8% of the record. 
    more » « less
  3. ABSTRACT MotivationSNAPSHOT USA is an annual, multicontributor camera trap survey of mammals across the United States. The growing SNAPSHOT USA dataset is intended for tracking the spatial and temporal responses of mammal populations to changes in land use, land cover and climate. These data will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, as well as the impacts of species interactions on daily activity patterns. Main Types of Variables ContainedSNAPSHOT USA 2019–2023 contains 987,979 records of camera trap image sequence data and 9694 records of camera trap deployment metadata. Spatial Location and GrainData were collected across the United States of America in all 50 states, 12 ecoregions and many ecosystems. Time Period and GrainData were collected between 1st August and 29th December each year from 2019 to 2023. Major Taxa and Level of MeasurementThe dataset includes a wide range of taxa but is primarily focused on medium to large mammals. Software FormatSNAPSHOT USA 2019–2023 comprises two .csv files. The original data can be found within the SNAPSHOT USA Initiative in the Wildlife Insights platform. 
    more » « less
  4. The Amazon River basin harbors some of the world’s largest wetland complexes, which are of major importance for biodiversity, the water cycle and climate, and human activities. Accurate estimates of inundation extent and its variations across spatial and temporal scales are therefore fundamental to understand and manage the basin’s resources. More than fifty inundation estimates have been generated for this region, yet major differences exist among the datasets, and a comprehensive assessment of them is lacking. Here we present an intercomparison of 29 inundation datasets for the Amazon basin, based on remote sensing only, hydrological modeling, or multi-source datasets, with 18 covering the lowland Amazon basin (elevation < 500 m, which includes most Amazon wetlands), and 11 covering individual wetland complexes (subregional datasets). Spatial resolutions range from 12.5 m to 25 km, and temporal resolution from static to monthly, spanning up to a few decades. Overall, 31% of the lowland basin is estimated as subject to inundation by at least one dataset. The long-term maximum inundated area across the lowland basin is estimated at 599,700 ± 81,800 km² if considering the three higher quality SAR-based datasets, and 490,300 ± 204,800 km² if considering all 18 datasets. However, even the highest resolution SAR-based dataset underestimates the maximum values for individual wetland complexes, suggesting a basin-scale underestimation of ~10%. The minimum inundation extent shows greater disagreements among datasets than the maximum extent: 139,300 ± 127,800 km² for SAR-based ones and 112,392 ± 79,300 km² for all datasets. Discrepancies arise from differences among sensors, time periods, dates of acquisition, spatial resolution, and data processing algorithms. The median total area subject to inundation in medium to large river floodplains (drainage area > 1,000 km²) is 323,700 km². The highest spatial agreement is observed for floodplains dominated by open water such as along the lower Amazon River, whereas intermediate agreement is found along major vegetated floodplains fringing larger rivers (e.g., Amazon mainstem floodplain). Especially large disagreements exist among estimates for interfluvial wetlands (Llanos de Moxos, Pacaya-Samiria, Negro, Roraima), where inundation tends to be shallower and more variable in time. Our data intercomparison helps identify the current major knowledge gaps regarding inundation mapping in the Amazon and their implications for multiple applications. In the context of forthcoming hydrology-oriented satellite missions, we make recommendations for future developments of inundation estimates in the Amazon and present a WebGIS application (https://amazon-inundation.herokuapp.com/) we developed to provide user-friendly visualization and data acquisition of current Amazon inundation datasets. 
    more » « less
  5. null (Ed.)
    Abstract. Topography is a fundamental input to hydrologic models criticalfor generating realistic streamflow networks as well as infiltration andgroundwater flow. Although there exist several national topographic datasetsfor the United States, they may not be compatible with gridded models thatrequire hydrologically consistent digital elevation models (DEMs). Here, wepresent a national topographic dataset developed to support griddedhydrologic simulations at 1 km and 250 m spatial resolution over the contiguousUnited States. The workflow is described step by step in two parts: (a) DEMprocessing using a Priority Flood algorithm to ensure hydrologicallyconsistent drainage networks and (b) slope calculation and smoothing toimprove drainage performance. The accuracy of the derived stream network isevaluated by comparing the derived drainage area to drainage areas reportedby the national stream gage network. The slope smoothing steps are evaluatedusing the runoff simulations with an integrated hydrologic model. Our DEMproduct started from the National Water Model DEM to ensure our finaldatasets will be as consistent as possible with this existing nationalframework. Our analysis shows that the additional processing we provideimproves the consistency of simulated drainage areas and the runoffsimulations that simulate gridded overland flow (as opposed to a networkrouting scheme). The workflow uses an open-source R package, and all outputdatasets and processing scripts are available and fully documented. All ofthe output datasets and scripts for processing are published through CyVerseat 250 m and 1 km resolution. The DOI link for the dataset is https://doi.org/10.25739/e1ps-qy48 (Zhang and Condon, 2020). 
    more » « less