skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Portable, Spectroscope-Inspired Three-Dimensionally Printed Smartphone Spectrophotometer
An inexpensive and simple three-dimensional (3D) printed spectrophotometer that interfaces with smartphone cameras for visualizing and measuring visible wavelength absorbance and analyte quantitation is reported. A conventional spectroscope inspired the spectrophotometer design to maximize visual engagement for educational purposes and functions as a single-beam visible spectrophotometer capable of precise calibration, standard curve generation, and quantitative analysis of real-life samples. Spectrophotometer calibration results using a four-point, red-green-blue coordinate-to-wavelength conversion demonstrate that the 3D-printed device exhibits a linear 5.0 nm/mm dispersion over the 400–700 nm range. Quantitative analysis validation using a smartphone camera and Open Source software (ImageJ) analysis for tartrazine determination demonstrate the molar absorptivity for the external standard tartrazine was significantly lower compared to the literature and commercial instrumentation (0.0062 μM–1cm–1versus 0.0216 μM–1cm–1for the commercial instrument). Still, the accuracy of the device was within the linear range is remarkable, as tartrazine determination in a real-life sample (Mello Yello soft drink) was found to be not statistically different compared to the result obtained on a commercial spectrophotometer (10.6 μM versus 10.5 μM, n = 5, p > 0.05). The device design and computer-aided drafting files are available publicly for Open Access replication and modification, with considerable promise for expanded capabilities and applications beyond visible spectroscopy and educational purposes.  more » « less
Award ID(s):
2144453
PAR ID:
10578254
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Sage Journals
Date Published:
Journal Name:
Applied Spectroscopy Practica
Volume:
3
Issue:
1
ISSN:
2755-1857
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We have developed a mid-infrared Doppler-free saturation absorption spectroscopy apparatus that employs a commercial continuous-wave optical parametric oscillator (CW OPO), complemented by a home-built automation and wavelength scanning system. Here, we report a comprehensive spectral scan of the Q branch transitions of theν3 = 1 band of methane (CH4) with an average linewidth (FWHM) of 4.5 MHz. The absolute frequency calibration was achieved using previously reported transition frequencies determined using optical frequency combs, while a Fabry–Perot etalon was used for the relative frequency calibration. We report 15 transitions with improved accuracies of 1.13 MHz (3.76 × 10−5 cm−1). 
    more » « less
  2. The silicate (Si) molybdenum blue method was modified by combining oxalate and ascorbic acid into a single reagent and was used for determining Si in sea water samples. The first step of this automated assay protocol was designed to perform either a calibration by a single Si standard prepared in deionized (DI) water, or to dilute samples in the range of 0–160 μM Si to fit into 0–20 μM Si calibration range using a 20 cm flow cell. By designing the assay protocol to function in batch mode, the influence of salinity on calibration was eliminated, thus making the method suitable for analysis of samples collected in the open ocean, coastal areas, or rivers. Reproducibility and accuracy of this method were evaluated by analysis of certified sea water reference materials. Phosphate (P) does not interfere significantly if the Si:P ratio is 4:1 or larger. The limit of detection was 514 nM Si, r.s.d. 2.1 %, sampling frequency 40 s/h, reagent consumption 700 μL/sample, and using deionized water as the carrier solution. 
    more » « less
  3. null (Ed.)
    A spatial heterodyne Raman spectrometer (SHRS), constructed using a modular optical cage and lens tube system, is described for use with a commercial silica and a custom single-crystal (SC) sapphire fiber Raman probe. The utility of these fiber-coupled SHRS chemical sensors is demonstrated using 532 nm laser excitation for acquiring Raman measurements of solid (sulfur) and liquid (cyclohexane) Raman standards as well as real-world, plastic-bonded explosives (PBX) comprising 1,3,5- triamino- 2,4,6- trinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) energetic materials. The SHRS is a fixed grating-based dispersive interferometer equipped with an array detector. Each Raman spectrum was extracted from its corresponding fringe image (i.e., interferogram) using a Fourier transform method. Raman measurements were acquired with the SHRS Littrow wavelength set at the laser excitation wavelength over a spectral range of ∼1750 cm −1 with a spectral resolution of ∼8 cm −1 for sapphire and ∼10 cm −1 for silica fiber probes. The large aperture of the SHRS allows much larger fiber diameters to be used without degrading spectral resolution as demonstrated with the larger sapphire collection fiber diameter (330 μm) compared to the silica fiber (100 μm). Unlike the dual silica fiber Raman probe, the dual sapphire fiber Raman probe did not include filtering at the fiber probe tip nearest the sample. Even so, SC sapphire fiber probe measurements produced less background than silica fibers allowing Raman measurements as close as ∼85 cm −1 to the excitation laser. Despite the short lengths of sapphire fiber used to construct the sapphire probe, well-defined, sharp sapphire Raman bands at 420, 580, and 750 cm −1 were observed in the SHRS spectra of cyclohexane and the highly fluorescent HMX-based PBX. SHRS measurements of the latter produced low background interference in the extracted Raman spectrum because the broad band fluorescence (i.e., a direct current, or DC, component) does not contribute to the interferogram intensity (i.e., the alternating current, or AC, component). SHRS spectral resolution, throughput, and signal-to-noise ratio are also discussed along with the merits of using sapphire Raman bands as internal performance references and as internal wavelength calibration standards in Raman measurements. 
    more » « less
  4. Acrylic acid is an important compound widely used in industry with multiple commercial applications, and it is also a key intermediate in the marine organosulfur cycle. However, the fundamental ultraviolet (UV) absorption spectrum of acrylic acid or its conjugate base, acrylate (pKa = 4.25 at 20 oC) have not been determined in water. In this paper, we determined the absorption spectrum of acrylate in aqueous solution at pH 7.2 and 20 oC between 207 and 400 nm. The molar absorptivity decreased rapidly from 3958 M‒1 cm‒1 at 207 nm to a non-detectable value at wavelengths greater than 330 nm, with weak absorption at wavelengths greater than 290 nm (e.g., ɛ290nm 2.7 M‒1 cm‒1). No discernable absorption bands were observed in the absorption spectrum. Excellent agreement was observed when comparing absorption spectra obtained (1) with two different spectrophotometers and (2) with standards prepared from either newly purchased sodium acrylate or from the base hydrolysis of dimethylsulfoniopropionate. Wavelength-dependent molar absorptivities were constant at pH 7.2 over a range of acrylate concentrations from 25 to 135 μM. The absorption spectrum red shifted when the solution pH increased from 2.8 to 8.2, with an isosbestic point observed at 214 nm indicating two exchangeable species in solution. Our study provides the first detailed UV absorption spectra of acrylic acid and acrylate in aqueous solution, with important implications regarding the detection and study of these compounds in environmental settings and commercial applications. 
    more » « less
  5. Banks, Craig (Ed.)
    The Fast Blue BB (FBBB) and 4-aminophenol (4-AP) colorimetric tests have been reportedly used for the qualitative determination of Δ9-THC in plants and for the differentiation between marijuana and hemp-type cannabis. We report the miniaturization of the FBBB colorimetric reaction on a silicone treated filter paper substrate and the analytical figures of merit for a quantitative determination of Δ9-THC for the first time. The reaction between Δ9-THC and FBBB forms a red chromophore that fluoresces when irradiated with visible (480 nm) or UV (365 nm) light, providing a 3-fold increase in sensitivity. Portable instruments are introduced for the objective color determination for both tests and for the fluorescence reading of the THC + FBBB complex. We report a fluorescence signal with Δ9-THC, Δ8-THC, and CBN. The limit of detection (LOD) was determined to be 1.6 ng/μL with precision ~12 % RSD for standard Δ9-THC solutions ranging between 5 and 20 ng/μL. The linear dynamic range for this test is reported between 1.6 ng/μL and 20 ng/μL for the portable fluorescence detector. The miniaturization of both colorimetric tests and the increased sensitivity of the FBBB test using fluorescence analysis, coupled to portable instruments allows for limited quantitative analysis of cannabis plants in the field. 
    more » « less