Abstract With the rising importance of virtual engineering in an increasingly competitive marketplace, there is a growing need for simplified representations of finite element (FE) modeling for spot joints in lightweight structures without losing accuracy in structural life evaluation. For this purpose, this paper presents a spot weld element with an implicit weld representation and its numerical implementation as a user element for deployment in commercial FE code for reliably computing traction structural stress in a mesh‐insensitive manner. The spot weld element is formulated by degenerating conventional first‐order four‐nodes shell elements by imposing kinematic constraints with respect to a series of virtual nodes placed in the region around a spot weld. The simplicity and effectiveness of the spot weld element have been validated by comparing with the explicit weld representation for computing mesh‐insensitive structural stresses and fatigue life correlation of welded components.
more »
« less
This content will become publicly available on February 1, 2026
An Implicit Fillet‐Weld Element Formulation for Mesh‐Insensitive Fatigue Evaluation of Complex Structures
ABSTRACT In fatigue evaluation of welded structures, explicit weld representations in finite element (FE) models are needed for reliably capturing stress or strain concentration behaviors at critical weld locations, for example, weld toe or weld root, in using widely accepted traction structural stress or extrapolation hot‐spot stress methods. The laborious efforts needed for generating weld geometry have been a major challenge for fatigue evaluation of complex structures containing many welds. In this paper, we present a user‐defined fillet‐weld element formulation and its numerical implementation for computing traction mesh‐insensitive structural stresses. The fillet‐weld element is formulated by connecting several linear four‐nodes Mindlin shell elements around weld region as a user‐defined element. The resulting elements can be directly used with major commercial FE codes through an available user subroutine interface. A number of well‐documented fillet‐welded components are then used for validating the accuracy and robustness of the developed fillet‐weld elements.
more »
« less
- Award ID(s):
- 2126163
- PAR ID:
- 10578296
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Fatigue & Fracture of Engineering Materials & Structures
- Volume:
- 48
- Issue:
- 2
- ISSN:
- 8756-758X
- Page Range / eLocation ID:
- 797 to 813
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A hybrid structural stress method is presented for significantly simplifying spot weld representations in fatigue evaluation of complex spot-welded structures while retaining a high degree of accuracy in structural stress computation. The method is formulated by extracting nodal forces and moments around a group of domain elements connected to a spot weld represented by a regular beam element. Through a systematic decomposition technique, existing closed-form solutions, previously only valid for modeling single-spot weld test specimens, can now be used for calculating the relevant structural stresses under complex loading conditions in structures, as validated its ability in correlating fatigue test data.more » « less
-
High cycle fatigue is a major cause of cracking in steel structures subjected to cyclic loading. It can result in substantial financial losses and structural failures compromising the safety of users. Uniaxial methods are in many cases insufficient for large in-service structures with complex geometry and connections subjected to multiaxial non-proportional loadings. A new method for fatigue life prediction for complex structures is presented using the critical plane method and the Kalman filter. The applicability of the methodology proposed is demonstrated and evaluated in a roller coaster support structure. Strain rosettes and accelerometers were installed on a support bracket near weld lines to measure responses. A substructure model is defined and used to estimate response prediction in the weld of the support bracket. The estimation of the input and the state estimation is performed using the augmented Kalman filter method, based on the response measurements and the substructured model. This new methodology is anticipated to be used for real-time fatigue prognosis of highway bridges.more » « less
-
null (Ed.)Fatigue-induced damage is one of the most common types of damage experienced by civil engineering structures subjected to cyclic loading such as bridges and rollercoasters. A framework for the analysis of multiaxial fatigue damage using strain rosettes installed on welded connections is proposed. The applicability of this methodology is shown using strain measurements collected in a welded gussetless truss connection of a vertical-lift bridge. Commonly used uniaxial fatigue analysis methods are insufficient in complex structures that experience variable amplitude, multiaxial loading, and non-proportional loading. Strain data with these characteristics are used for the estimation of the number of multiaxial stress reversals induced by in service loads and the number of associated cycles using the rain-flow method. Methods proposed for uniaxial loading and multiaxial non-proportional loading are compared. Results show that non-proportional loading and the accuracy of the critical plane estimation can cause a significant decrease in the estimates of remaining fatigue life. The methodology proposed is anticipated to be used for real-time fatigue prognosis aiming to address critical needs related to maintenance procedures of complex structures, visual inspection techniques and evaluation tools for infrastructure networks.more » « less
-
null (Ed.)Abstract Pyramidal truss sandwich panels (PTSPs) are widely used in engineering structures and their face sheets and core parts are generally bonded by the welding process. A large number of solid elements are usually required in the finite element (FE) model of a PTSP with welded joints to obtain its accurate modal parameters. Ignoring welded joints of the PTSP can save many degrees of freedom (DOFs), but significantly change its natural frequencies. This study aims to accurately determine modal parameters of a PTSP with welded joints with much fewer DOFs than those of its solid element model and to obtain its operational modal analysis results by avoiding missing its modes. Two novel methods that consider welded joints as equivalent stiffness are proposed to create beam-shell element models of the PTSP. The main step is to match stiffnesses of beam and shell elements of a welded joint with those of its solid elements. Compared with the solid element model of the PTSP, its proposed models provide almost the same levels of accuracy for natural frequencies and mode shapes for the first 20 elastic modes, while reducing DOFs by about 98% for the whole structure and 99% for each welded joint. The first 14 elastic modes of a PTSP specimen that were measured without missing any modes by synchronously capturing its two-faced vibrations through use of a three-dimensional scanning laser vibrometer (SLV) and a mirror experimentally validate its beam-shell element models created by the two proposed methods.more » « less
An official website of the United States government
