skip to main content

Title: Remaining Fatigue Life Prediction of a Roller Coaster Subjected to Multiaxial Nonproportional Loading Using Limited Measured Strain Locations
High cycle fatigue is a major cause of cracking in steel structures subjected to cyclic loading. It can result in substantial financial losses and structural failures compromising the safety of users. Uniaxial methods are in many cases insufficient for large in-service structures with complex geometry and connections subjected to multiaxial non-proportional loadings. A new method for fatigue life prediction for complex structures is presented using the critical plane method and the Kalman filter. The applicability of the methodology proposed is demonstrated and evaluated in a roller coaster support structure. Strain rosettes and accelerometers were installed on a support bracket near weld lines to measure responses. A substructure model is defined and used to estimate response prediction in the weld of the support bracket. The estimation of the input and the state estimation is performed using the augmented Kalman filter method, based on the response measurements and the substructured model. This new methodology is anticipated to be used for real-time fatigue prognosis of highway bridges.
Authors:
; ; ; ;
Award ID(s):
1640693
Publication Date:
NSF-PAR ID:
10186156
Journal Name:
Structures Congress Conference 2019
Page Range or eLocation-ID:
112 to 121
Sponsoring Org:
National Science Foundation
More Like this
  1. Structural health monitoring of complex structures is often limited by restricted accessibility to locations of interest within the structure and availability of operational loads. In this work, a novel output-only virtual sensing scheme is proposed. This scheme involves the implementation of the modal expansion in an augmented Kalman filter. Performance of the proposed scheme is compared with two existing methods. Method 1 relies on a finite element model updating, batch data processing, and modal expansion (MUME) procedure. Method 2 employs a recursive sequential estimation algorithm, which feeds a substructure model of the instrumented system into an Augmented Kalman Filter (AKF). The new scheme referred to as Method 3 (ME-AKF), implements strain estimates generated via Modal Expansion into an AKF as virtual measurements. To demonstrate the applicability of the aforementioned methods, a rollercoaster connection was instrumented with accelerometers, strain rosettes, and an optical sensor. A comparison of estimated dynamic strain response at unmeasured locations using three alternative schemes is presented. Although acceleration measurements are used indirectly for model updating, the response-only methods presented in this research use only measurements from strain rosettes for strain history predictions and require no prior knowledge of input forces. Predicted strains using all methods are shownmore »to sufficiently predict the measured strain time histories from a control location and lie within a 95% confidence interval calculated based on modal expansion equations. In addition, the proposed ME-AKF method shows improvement in strain predictions at unmeasured locations without the necessity of batch data processing. The proposed scheme shows high potential for real-time dynamic estimation of the strain and stress state of complex structures at unmeasured locations.« less
  2. Fatigue-induced damage is one of the most common types of damage experienced by civil engineering structures subjected to cyclic loading such as bridges and rollercoasters. A framework for the analysis of multiaxial fatigue damage using strain rosettes installed on welded connections is proposed. The applicability of this methodology is shown using strain measurements collected in a welded gussetless truss connection of a vertical-lift bridge. Commonly used uniaxial fatigue analysis methods are insufficient in complex structures that experience variable amplitude, multiaxial loading, and non-proportional loading. Strain data with these characteristics are used for the estimation of the number of multiaxial stress reversals induced by in service loads and the number of associated cycles using the rain-flow method. Methods proposed for uniaxial loading and multiaxial non-proportional loading are compared. Results show that non-proportional loading and the accuracy of the critical plane estimation can cause a significant decrease in the estimates of remaining fatigue life. The methodology proposed is anticipated to be used for real-time fatigue prognosis aiming to address critical needs related to maintenance procedures of complex structures, visual inspection techniques and evaluation tools for infrastructure networks.
  3. Rollercoasters are challenging structures. Although the ever-changing geometry can guarantee a thrilling ride, the complexity of loading patterns due to the intricate geometry make testing and analysis of these structures challenging. Fatigue-induced damage is one of the most common types of damage experienced by civil engineering structures subjected to cyclic loading such as bridges and rollercoasters. Fatigue cracking eventually occurs when structures undergo a certain number of loading and unloading recurrences. This cyclic loading under stresses above a certain limit induces microcracking that can eventually propagate into failure of a member or connection. Because of the geometric and structural similarities between rollercoasters and bridge connections, similar techniques can be used for structural health monitoring and estimation of remaining fatigue life. Uniaxial fatigue analysis methods are widely used for the analysis of bridge connections. However, there is little guidance for the analysis of complex connections. They can experience variable amplitude, multiaxial, and non-proportional loading. In such cases uniaxial fatigue methods are insufficient and can lead to underestimates. A framework for the understanding and analysis of multiaxial fatigue damage using strain data collected from strain rosettes is presented. Uniaxial and multiaxial fatigue analysis methods proposed for non-proportional loading are compared. Methods proposedmore »are applicable to both rollercoaster and bridge connections. The critical plane method is used for the estimation of multiaxial fatigue life. Results show that non-proportional loading and the accuracy of the critical plane estimation can cause a significant decrease in the estimates of remaining fatigue life. This methodology is anticipated to be used for real-time fatigue prognosis and evaluation tools for bridge networks.« less
  4. System identification poses a significant bottleneck to characterizing and controlling complex systems. This challenge is greatest when both the system states and parameters are not directly accessible, leading to a dual-estimation problem. Current approaches to such problems are limited in their ability to scale with many-parameter systems, as often occurs in networks. In the current work, we present a new, computationally efficient approach to treat large dual-estimation problems. In this work, we derive analytic back-propagated gradients for the Prediction Error Method which enables efficient and accurate identification of large systems. The PEM approach consists of directly integrating state estimation into a dual-optimization objective, leaving a differentiable cost/error function only in terms of the unknown system parameters, which we solve using numerical gradient/Hessian methods. Intuitively, this approach consists of solving for the parameters that generate the most accurate state estimator (Extended/Cubature Kalman Filter). We demonstrate that this approach is at least as accurate in state and parameter estimation as joint Kalman Filters (Extended/Unscented/Cubature) and Expectation-Maximization, despite lower complexity. We demonstrate the utility of our approach by inverting anatomically-detailed individualized brain models from human magnetoencephalography (MEG) data.
  5. Uwe Sauer, Dirk (Ed.)
    A B S T R A C T This paper proposes a model for parameter estimation of Vanadium Redox Flow Battery based on both the electrochemical model and the Equivalent Circuit Model. The equivalent circuit elements are found by a newly proposed optimization to minimized the error between the Thevenin and KVL-based impedance of the equivalent circuit. In contrast to most previously proposed circuit models, which are only introduced for constant current charging, the proposed method is applicable for all charging procedures, i.e., constant current, constant voltage, and constant current-constant voltage charging procedures. The proposed model is verified on a nine-cell VRFB stack by a sample constant current-constant voltage charging. As observed, in constant current charging mode, the terminal voltage model matches the measured data closely with low deviation; however, the terminal voltage model shows discrepancies with the measured data of VRFB in constant voltage charging. To improve the proposed circuit model’s discrepancies in constant voltage mode, two Kalman filters, i.e., hybrid extended Kalman filter and particle filter estimation algorithms, are used in this study. The results show the accuracy of the proposed equivalent with an average deviation of 0.88% for terminal voltage model estimation by the extended KF-based methodmore »and the average deviation of 0.79% for the particle filter-based estimation method, while the initial equivalent circuit has an error of 7.21%. Further, the proposed procedure extended to estimate the state of charge of the battery. The results show an average deviation of 4.2% in estimating the battery state of charge using the PF method and 4.4% using the hybrid extended KF method, while the electrochemical SoC estimation method is taken as the reference. These two Kalman Filter based methods are more accurate compared to the average deviation of state of charge using the Coulomb counting method, which is 7.4%.« less