skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the sharp constants in the regional fractional Sobolev inequalities
Abstract In this paper, we study the sharp constants in fractional Sobolev inequalities associated with the regional fractional Laplacian in domains.  more » « less
Award ID(s):
1954995
PAR ID:
10578358
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Partial Differential Equations and Applications
Volume:
6
Issue:
2
ISSN:
2662-2963
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We extend the free convolution of Brown measures of $$R$$-diagonal elements introduced by Kösters and Tikhomirov [ 28] to fractional powers. We then show how this fractional free convolution arises naturally when studying the roots of random polynomials with independent coefficients under repeated differentiation. When the proportion of derivatives to the degree approaches one, we establish central limit theorem-type behavior and discuss stable distributions. 
    more » « less
  2. Abstract Domain walls in fractional quantum Hall ferromagnets are gapless helical one-dimensional channels formed at the boundaries of topologically distinct quantum Hall (QH) liquids. Naïvely, these helical domain walls (hDWs) constitute two counter-propagating chiral states with opposite spins. Coupled to an s-wave superconductor, helical channels are expected to lead to topological superconductivity with high order non-Abelian excitations1–3. Here we investigate transport properties of hDWs in theν = 2/3 fractional QH regime. Experimentally we found that current carried by hDWs is substantially smaller than the prediction of the naïve model. Luttinger liquid theory of the system reveals redistribution of currents between quasiparticle charge, spin and neutral modes, and predicts the reduction of the hDW current. Inclusion of spin-non-conserving tunneling processes reconciles theory with experiment. The theory confirms emergence of spin modes required for the formation of fractional topological superconductivity. 
    more » « less
  3. Abstract Developing constitutive models that can describe a complex fluid’s response to an applied stimulus has been one of the critical pursuits of rheologists. The complexity of the models typically goes hand-in-hand with that of the observed behaviors and can quickly become prohibitive depending on the choice of materials and/or flow protocols. Therefore, reducing the number of fitting parameters by seeking compact representations of those constitutive models can obviate extra experimentation to confine the parameter space. To this end, fractional derivatives in which the differential response of matter accepts non-integer orders have shown promise. Here, we develop neural networks that are informed by a series of different fractional constitutive models. These fractional rheology-informed neural networks (RhINNs) are then used to recover the relevant parameters (fractional derivative orders) of three fractional viscoelastic constitutive models, i.e., fractional Maxwell, Kelvin-Voigt, and Zener models. We find that for all three studied models, RhINNs recover the observed behavior accurately, although in some cases, the fractional derivative order is recovered with significant deviations from what is known as ground truth. This suggests that extra fractional elements are redundant when the material response is relatively simple. Therefore, choosing a fractional constitutive model for a given material response is contingent upon the response complexity, as fractional elements embody a wide range of transient material behaviors. 
    more » « less
  4. Abstract This study explores the role that the microstructure plays in determining the macroscopic static response of porous elastic continua and exposes the occurrence of position-dependent nonlocal effects that are strictly correlated to the configuration of the microstructure. Then, a nonlocal continuum theory based on variable-order fractional calculus is developed in order to accurately capture the complex spatially distributed nonlocal response. The remarkable potential of the fractional approach is illustrated by simulating the nonlinear thermoelastic response of porous beams. The performance, evaluated both in terms of accuracy and computational efficiency, is directly contrasted with high-fidelity finite element models that fully resolve the pores’ geometry. Results indicate that the reduced-order representation of the porous microstructure, captured by the synthetic variable-order parameter, offers a robust and accurate representation of the multiscale material architecture that largely outperforms classical approaches based on the concept of average porosity. 
    more » « less
  5. Abstract In this article, using that the fractional Laplacian can be factored into a product of the divergence operator, a Riesz potential operator and the gradient operator, we introduce an anomalous fractional diffusion operator, involving a matrixK(x), suitable when anomalous diffusion is being studied in a non homogeneous medium. For the case ofK(x) a constant, symmetric positive definite matrix we show that the fractional Poisson equation is well posed, and determine the regularity of the solution in terms of the regularity of the right hand side function. 
    more » « less