skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atmospheric Characterization of the Super-Jupiter HIP 99770 b with KPIC
Abstract Young, self-luminous super-Jovian companions discovered by direct imaging provide a challenging test for planet formation and evolution theories. By spectroscopically characterizing the atmospheric compositions of these super-Jupiters, we can constrain their formation histories. Here we present studies of the recently discovered HIP 99770 b, a 16MJuphigh-contrast companion on a 17 au orbit, using the fiber-fed high-resolution spectrograph KPIC ( R ∼ 35,000) on the Keck II telescope. OurK-band observations led to detections of H2O and CO in the atmosphere of HIP 99770 b. We carried out free retrieval analyses usingpetitRADTRANSto measure its chemical abundances, including the metallicity and C/O ratio, projected rotation velocity ( v sin i ), and radial velocity (RV). We found that the companion’s atmosphere has C/O = 0.55 0.04 + 0.06 and [M/H] = 0.26 0.23 + 0.24 (1σconfidence intervals), values consistent with those of the Sun and with a companion formation via gravitational instability or core accretion. The projected rotation velocity v sin ( i ) < 7.8 km s−1is small relative to other directly imaged companions with similar masses and ages. This may imply a nearly pole-on orientation or effective magnetic braking by a circumplanetary disk. In addition, we added the companion-to-primary relative RV measurement to the orbital fitting and obtained updated constraints on orbital parameters. Detailed characterization of super-Jovian companions within 20 au like HIP 99770 b is critical for understanding the formation histories of this population.  more » « less
Award ID(s):
2143400
PAR ID:
10578448
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
The Astronomical Journal
Date Published:
Journal Name:
The Astronomical Journal
Volume:
168
Issue:
3
ISSN:
0004-6256
Page Range / eLocation ID:
131
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The warm Neptune GJ 3470b transits a nearby (d= 29 pc) bright slowly rotating M1.5-dwarf star. Using spectroscopic observations during two transits with the newly commissioned NEID spectrometer on the WIYN 3.5 m Telescope at Kitt Peak Observatory, we model the classical Rossiter–McLaughlin effect, yielding a sky-projected obliquity of λ = 98 12 + 15 and a v sin i = 0.85 0.33 + 0.27 km s 1 . Leveraging information about the rotation period and size of the host star, our analysis yields a true obliquity of ψ = 95 8 + 9 , revealing that GJ 3470b is on a polar orbit. Using radial velocities from HIRES, HARPS, and the Habitable-zone Planet Finder, we show that the data are compatible with a long-term radial velocity (RV) slope of γ ̇ = 0.0022 ± 0.0011 m s 1 day 1 over a baseline of 12.9 yr. If the RV slope is due to acceleration from another companion in the system, we show that such a companion is capable of explaining the polar and mildly eccentric orbit of GJ 3470b using two different secular excitation models. The existence of an outer companion can be further constrained with additional RV observations, Gaia astrometry, and future high-contrast imaging observations. Lastly, we show that tidal heating from GJ 3470b’s mild eccentricity has most likely inflated the radius of GJ 3470b by a factor of ∼1.5–1.7, which could help account for its evaporating atmosphere. 
    more » « less
  2. Abstract M dwarfs are common host stars to exoplanets but often lack atmospheric abundance measurements. Late-M dwarfs are also good analogs to the youngest substellar companions, which share similarTeff∼ 2300–2800 K. We present atmospheric analyses for the M7.5 companion HIP 55507 B and its K6V primary star with Keck/KPIC high-resolution (R∼ 35,000)K-band spectroscopy. First, by including KPIC relative radial velocities between the primary and secondary in the orbit fit, we improve the dynamical mass precision by 60% and find M B = 88.0 3.2 + 3.4 M Jup , putting HIP 55507 B above the stellar–substellar boundary. We also find that HIP 55507 B orbits its K6V primary star with a = 38 3 + 4 au ande= 0.40 ± 0.04. From atmospheric retrievals of HIP 55507 B, we measure [C/H] = 0.24 ± 0.13, [O/H] = 0.15 ± 0.13, and C/O = 0.67 ± 0.04. Moreover, we strongly detect13CO (7.8σsignificance) and tentatively detect H 2 18 O (3.7σsignificance) in the companion’s atmosphere and measure 12 CO / 13 CO = 98 22 + 28 and H 2 16 O / H 2 18 O = 240 80 + 145 after accounting for systematic errors. From a simplified retrieval analysis of HIP 55507 A, we measure 12 CO / 13 CO = 79 16 + 21 and C 16 O / C 18 O = 288 70 + 125 for the primary star. These results demonstrate that HIP 55507 A and B have consistent12C/13C and16O/18O to the <1σlevel, as expected for a chemically homogeneous binary system. Given the similar flux ratios and separations between HIP 55507 AB and systems with young substellar companions, our results open the door to systematically measuring13CO and H 2 18 O abundances in the atmospheres of substellar or even planetary-mass companions with similar spectral types. 
    more » « less
  3. Abstract Using the Keck Planet Imager and Characterizer, we obtained high-resolution (R∼ 35,000)K-band spectra of the four planets orbiting HR 8799. We clearly detected H2O and CO in the atmospheres of HR 8799 c, d, and e, and tentatively detected a combination of CO and H2O in b. These are the most challenging directly imaged exoplanets that have been observed at high spectral resolution to date when considering both their angular separations and flux ratios. We developed a forward-modeling framework that allows us to jointly fit the spectra of the planets and the diffracted starlight simultaneously in a likelihood-based approach and obtained posterior probabilities on their effective temperatures, surface gravities, radial velocities, and spins. We measured v sin ( i ) values of 10.1 2.7 + 2.8 km s 1 for HR 8799 d and 15.0 2.6 + 2.3 km s 1 for HR 8799 e, and placed an upper limit of <14 km s−1of HR 8799 c. Under two different assumptions of their obliquities, we found tentative evidence that rotation velocity is anticorrelated with companion mass, which could indicate that magnetic braking with a circumplanetary disk at early times is less efficient at spinning down lower-mass planets. 
    more » « less
  4. Abstract We report discovering an exoplanet from following up a microlensing event alerted by Gaia. The event Gaia22dkv is toward a disk source rather than the traditional bulge microlensing fields. Our primary analysis yields a Jovian planet with M p = 0.59 0.05 + 0.15 M J at a projected orbital separation r = 1.4 0.3 + 0.8 au, and the host is a ∼1.1Mturnoff star at ∼1.3 kpc. At r 14 , the host is far brighter than any previously discovered microlensing planet host, opening up the opportunity to test the microlensing model with radial velocity (RV) observations. RV data can be used to measure the planet’s orbital period and eccentricity, and they also enable searching for inner planets of the microlensing cold Jupiter, as expected from the “inner–outer correlation” inferred from Kepler and RV discoveries. Furthermore, we show that Gaia astrometric microlensing will not only allow precise measurements of its angular Einstein radiusθEbut also directly measure the microlens parallax vector and unambiguously break a geometric light-curve degeneracy, leading to the definitive characterization of the lens system. 
    more » « less
  5. Abstract We report the discovery of a close-in (Porb= 3.349 days) warm Neptune with clear transit timing variations (TTVs) orbiting the nearby (d= 47.3 pc) active M4 star, TOI-2015. We characterize the planet's properties using Transiting Exoplanet Survey Satellite (TESS) photometry, precise near-infrared radial velocities (RVs) with the Habitable-zone Planet Finder Spectrograph, ground-based photometry, and high-contrast imaging. A joint photometry and RV fit yields a radius R p = 3.37 0.20 + 0.15 R , mass m p = 16.4 4.1 + 4.1 M , and density ρ p = 2.32 0.37 + 0.38 g cm 3 for TOI-2015 b, suggesting a likely volatile-rich planet. The young, active host star has a rotation period ofProt= 8.7 ± 0.9 days and associated rotation-based age estimate of 1.1 ± 0.1 Gyr. Though no other transiting planets are seen in the TESS data, the system shows clear TTVs of super-period P sup 430 days and amplitude ∼100 minutes. After considering multiple likely period-ratio models, we show an outer planet candidate near a 2:1 resonance can explain the observed TTVs while offering a dynamically stable solution. However, other possible two-planet solutions—including 3:2 and 4:3 resonances—cannot be conclusively excluded without further observations. Assuming a 2:1 resonance in the joint TTV-RV modeling suggests a mass of m b = 13.3 4.5 + 4.7 M for TOI-2015 b and m c = 6.8 2.3 + 3.5 M for the outer candidate. Additional transit and RV observations will be beneficial to explicitly identify the resonance and further characterize the properties of the system. 
    more » « less