skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Orbital and Atmospheric Characterization of the 1RXS J034231.8+121622 System using High-resolution Spectroscopy Confirms that the Companion is a Low-mass Star
Abstract The 1RXS J034231.8+121622 system consists of an M dwarf primary and a directly imaged low-mass stellar companion. We use high-resolution spectroscopic data from Keck/KPIC to estimate the objects' atmospheric parameters and radial velocities (RVs). Using PHOENIX stellar models, we find that the primary has a temperature of 3460 ± 50 K and a metallicity of 0.16 ± 0.04, while the secondary has a temperature of 2510 ± 50 K and a metallicity of 0.13 0.11 + 0.12 . Recent work suggests this system is associated with the Hyades, giving it an older age than previous estimates. Both metallicities agree with current Hyades [Fe/H] measurements (0.11–0.21). Using stellar evolutionary models, we obtain significantly higher masses for the objects, 0.30 ± 0.15Mand 0.08 ± 0.01M(84 ± 11MJup), respectively. Using the RVs and a new astrometry point from Keck/NIRC2, we find that the system is likely an edge-on, moderately eccentric ( 0.41 0.08 + 0.27 ) configuration. We also estimate the C/O ratio of both objects using custom grid models, obtaining 0.42 ± 0.10 (primary) and 0.55 ± 0.10 (companion). From these results, we confirm that this system most likely went through a binary star formation process in the Hyades. The significant changes in this system's parameters since its discovery highlight the importance of high-resolution spectroscopy for both orbital and atmospheric characterization of directly imaged companions.  more » « less
Award ID(s):
2143400
PAR ID:
10578456
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
The Astronomical Journal
Date Published:
Journal Name:
The Astronomical Journal
Volume:
167
Issue:
6
ISSN:
0004-6256
Page Range / eLocation ID:
278
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present ∼300 stellar metallicity measurements in two faint M31 dwarf galaxies, Andromeda XVI (MV= −7.5) and Andromeda XXVIII (MV= –8.8), derived using metallicity-sensitive calcium H and K narrowband Hubble Space Telescope imaging. These are the first individual stellar metallicities in And XVI (95 stars). Our And XXVIII sample (191 stars) is a factor of ∼15 increase over literature metallicities. For And XVI, we measure [Fe/H] = 2.17 0.05 + 0.05 , σ [Fe/H] = 0.33 0.07 + 0.07 , and ∇[Fe/H]= −0.23 ± 0.15 dex R e 1 . We find that And XVI is more metal-rich than Milky Way ultrafaint dwarf galaxies of similar luminosity, which may be a result of its unusually extended star formation history. For And XXVIII, we measure [Fe/H] = 1.95 0.04 + 0.04 , σ [Fe/H] = 0.34 0.05 + 0.05 , and ∇[Fe/H]= −0.46 ± 0.10 dex R e 1 , placing it on the dwarf galaxy mass–metallicity relation. Neither galaxy has a metallicity distribution function (MDF) with an abrupt metal-rich truncation, suggesting that star formation fell off gradually. The stellar metallicity gradient measurements are among the first for faint (L≲ 106L) galaxies outside the Milky Way halo. Both galaxies’ gradients are consistent with predictions from the FIRE simulations, where an age–gradient strength relationship is the observational consequence of stellar feedback that produces dark matter cores. We include a catalog for community spectroscopic follow-up, including 19 extremely metal-poor ([Fe/H] < –3.0) star candidates, which make up 7% of And XVI’s MDF and 6% of And XXVIII’s. 
    more » « less
  2. Abstract Young, self-luminous super-Jovian companions discovered by direct imaging provide a challenging test for planet formation and evolution theories. By spectroscopically characterizing the atmospheric compositions of these super-Jupiters, we can constrain their formation histories. Here we present studies of the recently discovered HIP 99770 b, a 16MJuphigh-contrast companion on a 17 au orbit, using the fiber-fed high-resolution spectrograph KPIC ( R ∼ 35,000) on the Keck II telescope. OurK-band observations led to detections of H2O and CO in the atmosphere of HIP 99770 b. We carried out free retrieval analyses usingpetitRADTRANSto measure its chemical abundances, including the metallicity and C/O ratio, projected rotation velocity ( v sin i ), and radial velocity (RV). We found that the companion’s atmosphere has C/O = 0.55 0.04 + 0.06 and [M/H] = 0.26 0.23 + 0.24 (1σconfidence intervals), values consistent with those of the Sun and with a companion formation via gravitational instability or core accretion. The projected rotation velocity v sin ( i ) < 7.8 km s−1is small relative to other directly imaged companions with similar masses and ages. This may imply a nearly pole-on orientation or effective magnetic braking by a circumplanetary disk. In addition, we added the companion-to-primary relative RV measurement to the orbital fitting and obtained updated constraints on orbital parameters. Detailed characterization of super-Jovian companions within 20 au like HIP 99770 b is critical for understanding the formation histories of this population. 
    more » « less
  3. Abstract We report the discovery of three faint and ultrafaint dwarf galaxies—Sculptor A, Sculptor B, and Sculptor C—in the direction of NGC 300 (D= 2.0 Mpc), a Large Magellanic Cloud–mass galaxy. Deep ground-based imaging with Gemini/GMOS resolves all three dwarf galaxies into stars, each displaying a red giant branch indicative of an old, metal-poor stellar population. No young stars or Higas are apparent, and the lack of a GALEX UV detection suggests that all three systems are quenched. Sculptor C (D= 2.04 0.13 + 0.10 Mpc;MV=  −9.1 ± 0.1 mag orLV= (3.7 0.3 + 0.4 ) × 105L) is consistent with being a satellite of NGC 300. Sculptor A (D= 1.35 0.08 + 0.22 Mpc;MV= −6.9 ± 0.3 mag orLV= (5 1 + 1 ) × 104L) is likely in the foreground of NGC 300 and at the extreme edge of the Local Group, analogous to the recently discovered ultrafaint Tucana B in terms of its physical properties and environment. Sculptor B (D= 2.48 0.24 + 0.21 Mpc;MV= −8.1 ± 0.3 mag orLV= (1.5 0.4 + 0.5 ) × 105L) is likely in the background, but future distance measurements are necessary to solidify this statement. It is also of interest due to its quiescent state and low stellar mass. Both Sculptor A and B are ≳2–4rvirfrom NGC 300 itself. The discovery of three dwarf galaxies in isolated or low-density environments offers an opportunity to study the varying effects of ram-pressure stripping, reionization, and internal feedback in influencing the star formation history of the faintest stellar systems. 
    more » « less
  4. Abstract We report the discovery of SDSS J022932.28+713002.7, a nascent extremely low-mass (ELM) white dwarf (WD) orbiting a massive (>1Mat 2σconfidence) companion with a period of 36 hr. We use a combination of spectroscopy, including data from the ongoing fifth-generation Sloan Digital Sky Survey (SDSS-V), and photometry to measure the stellar parameters of the primary pre-ELM WD. The lightcurve of the primary WD exhibits ellipsoidal variation, which we combine with radial velocity data andPHOEBEbinary simulations to estimate the mass of the invisible companion. We find that the primary WD has massM1= 0.18 0.02 + 0.02 Mand the unseen secondary has massM2= 1.19 0.14 + 0.21 M. The mass of the companion suggests that it is most likely a near-Chandrasekhar-mass WD or a neutron star. It is likely that the system recently went through a Roche lobe overflow from the visible primary onto the invisible secondary. The dynamical configuration of the binary is consistent with the theoretical evolutionary tracks for such objects, and the primary is currently in its contraction phase. The measured orbital period puts this system on a stable evolutionary path which, within a few gigayears, will lead to a contracted ELM WD orbiting a massive compact companion. 
    more » « less
  5. Abstract We confirm the planetary nature of TOI-5344 b as a transiting giant exoplanet around an M0-dwarf star. TOI-5344 b was discovered with the Transiting Exoplanet Survey Satellite photometry and confirmed with ground-based photometry (the Red Buttes Observatory 0.6 m telescope), radial velocity (the Habitable-zone Planet Finder), and speckle imaging (the NN-Explore Exoplanet Stellar Speckle Imager). TOI-5344 b is a Saturn-like giant planet (ρ= 0.80 0.15 + 0.17 g cm−3) with a planetary radius of 9.7 ± 0.5R(0.87 ± 0.04RJup) and a planetary mass of 135 18 + 17 M (0.42 0.06 + 0.05 M Jup ). It has an orbital period of 3.792622 0.000010 + 0.000010 days and an orbital eccentricity of 0.06 0.04 + 0.07 . We measure a high metallicity for TOI-5344 of [Fe/H] = 0.48 ± 0.12, where the high metallicity is consistent with expectations from formation through core accretion. We compare the metallicity of the M-dwarf hosts of giant exoplanets to that of M-dwarf hosts of nongiants (≲8R). While the two populations appear to show different metallicity distributions, quantitative tests are prohibited by various sample caveats. 
    more » « less