Abstract The seasonal timing of life history transitions is often critical to fitness, and many organisms rely upon environmental cues to match life cycle events with favorable conditions. In plants, the timing of seed germination is mediated by seasonal cues such as rainfall and temperature. Variation in cue responses among species can reflect evolutionary processes and adaptation to local climate and can affect vulnerability to changing conditions. Indeed, climate change is altering the timing of precipitation, and germination responses to such change can have consequences for individual fitness, population dynamics, and species distributions. Here, we assessed responses to the seasonal timing of germination‐triggering rains for eleven species spanning theStreptanthus/Caulanthusclade (Brassicaceae). To do so, we experimentally manipulated the onset date of rainfall events, measured effects on germination fraction, and evaluated whether responses were constrained by evolutionary relationships across the phylogeny. We then explored the possible consequences of these responses to contemporary shifts in precipitation timing. Germination fractions decreased with later onset of rains and cooler temperatures for all but threeCaulanthusspecies. Species' germination responses to the timing of rainfall and seasonal temperatures were phylogenetically constrained, withCaulanthusspecies appearing less responsive. Further, four species are likely already experiencing significant decreases in germination fractions with observed climate change, which has shifted the timing of rainfall towards the cooler, winter months in California. Overall, our findings emphasize the sensitivity of germination to seasonal conditions, underscore the importance of interacting environmental cues, and highlight vulnerability to shifting precipitation patterns with climate change, particularly in more northern, mesic species.
more »
« less
Rains and Showers in OTREC; Weak Temperature Gradient Modeling
Abstract Rainfall in the tropics has been shown to be produced either by isolated but intense convective systems (showersregime) or widespread but weaker systems (rainsregime). We examine significant rainfall systems observed in the OTREC project (Organization of Tropical East Pacific Convection) in order to tease out the physical mechanisms differentiating these two regimes. We find that rains occur in very moist environments, typically with weak conditional instability. In contrast, showers develop in drier environments with larger instability. Spectral weak temperature gradient numerical calculations show that showers are associated with episodic rainfall separated by significant quiescent periods, whereas rains produce continuous simulated rainfall after a spinup period. Mass flux profiles of showers and rains are very different, resulting in different effects on the large scale environment.
more »
« less
- Award ID(s):
- 2034817
- PAR ID:
- 10578550
- Publisher / Repository:
- JAMES
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 16
- Issue:
- 3
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In Mediterranean climates, the timing of seasonal rains determines germination, flowering phenology and fitness. As climate change alters seasonal precipitation patterns, it is important to ask how these changes will affect the phenology and fitness of plant populations. We addressed this question experimentally with the annual plant speciesArabidopsis thaliana.In a first experiment, we manipulated the date of rainfall onset and recorded germination phenology on sand and soil substrates. In a second experiment, we manipulated germination date, growing season length and mid‐season drought to measure their effects on flowering time and fitness. Within each experiment, we manipulated seed dormancy and flowering time using multilocus near‐isogenic lines segregating strong and weak alleles of the seed dormancy geneDOG1and the flowering time geneFRI. We synthesized germination phenology data from the first experiment with fitness functions from the second experiment to project population fitness under different seasonal rainfall scenarios.Germination phenology tracked rainfall onset but was slower and more variable on sand than on soil. Many seeds dispersed on sand in spring and summer delayed germination until the cooler temperatures of autumn. The high‐dormancyDOG1allele also prevented immediate germination in spring and summer. Germination timing strongly affected plant fitness. Fecundity was highest in the October germination cohort and declined in spring germinants. The late floweringFRIallele had lower fecundity, especially in early fall and spring cohorts. Projections of population fitness revealed that: (1) Later onset of autumn rains will negatively affect population fitness. (2) Slow, variable germination on sand buffers populations against fitness impacts of variable spring and summer rainfall. (3) Seasonal selection favours high dormancy and early flowering genotypes in a Mediterranean climate with hot dry summers. The high‐dormancyDOG1allele delayed germination of spring‐dispersed fresh seeds until more favourable early fall conditions, resulting in higher projected population fitness.These findings suggest that Mediterranean annual plant populations are vulnerable to changes in seasonal precipitation, especially in California where rainfall onset is already occurring later. The fitness advantage of highly dormant, early flowering genotypes helps explain the prevalence of this strategy in Mediterranean populations. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract Future climates will alter the frequency and size of rain events in drylands, potentially affecting soil microbes that generate carbon feedbacks to climate, but field tests are rare. Topsoils in drylands are commonly colonized by biological soil crusts (biocrusts), photosynthesis‐based communities that provide services ranging from soil fertilization to stabilization against erosion. We quantified responses of biocrust microbial communities to 12 years of altered rainfall regimes, with 60 mm of additional rain per year delivered either as small (5 mm) weekly rains or large (20 mm) monthly rains during the summer monsoon season. Rain addition promoted microbial diversity, suppressed the dominant cyanobacterium,Microcoleus vaginatus, and enhanced nitrogen‐fixing taxa, but did not consistently increase microbial biomass. The addition of many small rain events increased microbial biomass, whereas few, large events did not. These results alter the physiological paradigm that biocrusts are most limited by the amount of rainfall and instead predict that regimes enriched in small rain events will boost cyanobacterial biocrusts and enhance their beneficial services to drylands.more » « less
-
A<sc>bstract</sc> Inside a medium, showers originating from a very high energy particle develop via medium-induced splitting processes such as bremsstrahlung and pair production. During shower development, two consecutive splittings sometimes overlap quantum mechanically, so that they cannot be treated independently. Some of these effects can be absorbed into an effective value of a medium parameter known as$$ \hat{q} $$ . Previous calculations (with certain simplifying assumptions) have found that, after adjusting the value of$$ \hat{q} $$ , the leftover effect of overlapping splittings is quite small for purely gluonic large-Ncshowers but is very much larger for large-NfQED showers, at comparable values ofNα. Here, by investigating the same problem for QCDwith quarksin the large-Nflimit of many quark flavors, we make a first study of whether the small effect in purely gluonic showers (i) was merely an accident or (ii) is more broadly characteristic of such overlap effects in QCD. We also offer a qualitative explanation for the large size of the effect in QED vs. QCD.more » « less
-
Climatological rainfall across much of the Greater Horn of Africa has a bimodal annual cycle characterized by the short rains from October to December and the long rains from March to May. Previous generations of climate models from the Coupled Model Intercomparison Project (CMIP3 and CMIP5) generally misrepresented the bimodal rainfall distribution in this region by generating too much rainfall during the short rains and too little during the long rains. The peak of the long rains in these models also typically showed a pronounced 1-month lag relative to observations. Here, the ability of 21 CMIP6 models to properly simulate the observed, climatological annual cycle of Greater Horn rainfall is examined, comparing results with CMIP5 and CMIP3. As previous work has shown a connection between Greater Horn climatological rainfall biases and model biases in sea surface temperatures (SSTs), pattern correlations of climatological SST biases are also analysed. For the multi-model mean, it is found that the earlier biases in Greater Horn rainfall and associated SSTs persist in CMIP6. Examining only the three best performing models in each CMIP group reveals the CMIP6 models outperform those in CMIP3, with mixed results regarding improvements over CMIP5. For the best performing CMIP6 models, the SST and 850 hPa wind biases are reduced over the Indian Ocean relative to the other CMIP6 models examined. No statistically significant relationship was identified between CMIP6 model performance and the horizontal resolution of the model. Combined, these results indicate the importance of properly simulating the annual cycle of SSTs in order to successfully model the observed rainfall annual cycle in the Greater Horn.more » « less
An official website of the United States government

