Abstract Clouds and radiation play an important role in warming events over the Southern Ocean (SO). Here we evaluate European Center for Medium‐Range Weather Forecasts Reanalysis version 5 (ERA5) and Polar Weather Research Forecast (PWRF) output through comparison to surface‐based measurements of clouds, radiation, and the atmospheric state over the SO during 2017–2023 at Escudero Station (62.2°S, 58.97°W) on King George Island. ERA5 mean monthly downward shortwave (DSW) radiative fluxes are found to be 38–50 W m−2higher than observations in summer, whereas ERA5 mean monthly downward longwave (DLW) is biased by −18 to −22 W m−2in summer and −16 W m−2on average over the year. Comparisons of temperature, humidity, and lowest‐cloud base heights between ERA5 and observations rule these factors out as large contributors to the DLW flux biases. The similarity between observed DLW cloud forcing distributions for atmospheric columns containing low‐level liquid and ice‐only clouds suggests limited influence of cloud phase errors on DLW biases. Thus the most likely explanation for DLW flux biases in ERA5 is underestimated cloud optical depth, which is also consistent with DSW flux biases. Similar biases in ERA5 are found during atmospheric river (AR) events. By contrast, PWRF flux bias magnitudes are much smaller during AR events (−12 W m−2for DSW and −2 W m−2for DLW). After bias correction, ERA5 monthly average net cloud forcing over 2017–2023 is found to be a minimum of −107 W m−2in January and a maximum of 65 W m−2in June.
more »
« less
This content will become publicly available on January 1, 2026
Turbulent heat flux dynamics along the Dotson and Getz ice-shelf fronts (Amundsen Sea, Antarctica)
Abstract. In coastal polynyas, where sea-ice formation and melting occur, it is crucial to have accurate estimates of heat fluxes in order to predict future sea-ice dynamics. The Amundsen Sea Polynya is a coastal polynya in Antarctica that remains poorly observed by in situ observations because of its remoteness. Consequently, we rely on models and reanalysis that are un-validated against observations to study the effect of atmospheric forcing on polynya dynamics. We use austral summer 2022 shipboard data to understand the turbulent heat flux dynamics in the Amundsen Sea Polynya and evaluate our ability to represent these dynamics in ERA5. We show that cold- and dry-air outbreaks from Antarctica enhance air–sea temperature and humidity gradients, triggering episodic heat loss events. The ocean heat loss is larger along the ice-shelf front, and it is also where the ERA5 turbulent heat flux exhibits the largest biases, underestimating the flux by up to 141 W m−2 due to its coarse resolution. By reconstructing a turbulent heat flux product from ERA5 variables using a nearest-neighbor approach to obtain sea surface temperature, we decrease the bias to 107 W m−2. Using a 1D model, we show that the mean co-located ERA5 heat loss underestimation of 28 W m−2 led to an overestimation of the summer evolution of sea surface temperature (heat content) by +0.76 °C (+8.2×107 J) over 35 d. By obtaining the reconstructed flux, the reduced heat loss bias (12 W m−2) reduced the seasonal bias in sea surface temperature (heat content) to −0.17 °C (−3.30 × 107 J) over the 35 d. This study shows that caution should be applied when retrieving ERA5 turbulent flux along the ice shelves and that a reconstructed flux using ERA5 variables shows better accuracy.
more »
« less
- Award ID(s):
- 1929991
- PAR ID:
- 10578556
- Publisher / Repository:
- EGU
- Date Published:
- Journal Name:
- Ocean Science
- Volume:
- 21
- Issue:
- 1
- ISSN:
- 1812-0792
- Page Range / eLocation ID:
- 359 to 379
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The mixed layer of polynyas is vital for local climate as it determines the exchange of properties and energy between ocean, sea ice, and atmosphere. However, its evolution is poorly understood, as it is controlled by complex interactions among these components, yet highly undersampled, especially outside summer. Here, we present a 2-month, high vertical-resolution, full-depth hydrographic dataset from the southeastern Amundsen Sea polynya in austral autumn (from mid-February to mid-April 2014) collected by a recovered seal tag. This novel dataset quantifies the changes in upper-ocean temperature and salinity stratification in this previously unobserved season. Our seal-tag measurements reveal that the mixed layer experiences deepening, salinification, and intense heat loss through surface fluxes. Heat and salt budgets suggest a sea ice formation rate of ∼3 cm per day. We use a one-dimensional model to reproduce the mixed layer evolution and further identify key controls on its characteristics. Our experiments with a range of reduced or amplified air–sea fluxes show that heat loss to the atmosphere and related sea ice formation are the principal determinants of stratification evolution. Additionally, our modeling demonstrates that horizontal advection is required to fully explain the mixed layer evolution, underlining the importance of the ice-covered neighboring region for determining sea ice formation rates in the Amundsen Sea polynya. Our findings suggest that the potential overestimation of sea ice production by satellite-based methods, due to the absence of oceanic heat flux, could be offset by horizontal advection inhibiting mixed layer deepening and sustaining sea ice formation.more » « less
-
Abstract The Amundsen Sea in West Antarctica features rapidly thinning ice shelves, large polynyas, and sizable spring phytoplankton blooms. Although considerable effort has gone into characterizing heat fluxes between the Amundsen Sea, its associated ice shelves, and the overlying atmosphere, the effect of the phytoplankton blooms on the distribution of heat remains poorly understood. In this modeling study, we implement a feedback from biogeochemistry onto physics into MITgcm‐BLING and use it to show that high levels of chlorophyll—concentrated in the Amundsen Sea Polynya and the Pine Island Polynya—have the potential to increase springtime surface warming in polynyas by steepening the attenuation profile of solar radiation with depth. The chlorophyll‐associated warm anomaly (on average between +0.2C and +0.3C) at the surface is quickly dissipated to the atmosphere, by increases in longwave, latent and sensible heat loss from open water areas. Outside of the coastal polynyas, the summertime warm anomaly leads to an average sea ice thinning of 1.7 cm across the region, and stimulates up to 20% additional seasonal melting near the fronts of ice shelves. The accompanying cold anomaly, caused by shading of deeper waters, persists year‐round and affects a decrease in the volume of Circumpolar Deep Water on the continental shelf. This cooling ultimately leads to an average sea ice thickening of 3.5 cm and, together with associated changes to circulation, reduces basal melting of Amundsen Sea ice shelves by approximately 7% relative to the model scenario with no phytoplankton bloom.more » « less
-
Abstract. During katabatic wind events in the Terra Nova Bay and Ross Sea polynyas, wind speeds exceeded 20 m s−1, air temperatures were below −25 ℃, and the mixed layer extended as deep as 600 meters. Yet, upper ocean temperature and salinity profiles were not perfectly homogeneous, as would be expected with vigorous convective heat loss. Instead, the profiles revealed bulges of warm and salty water directly beneath the ocean surface and extending downwards tens of meters. Considering both the colder air above and colder water below, we suggest the increase in temperature and salinity reflects latent heat and salt release during unconsolidated frazil ice production within the upper water column. We use a simplified salt budget to analyze these anomalies to estimate in-situ frazil ice concentration between 332 × 10−3 and 24.4 × 10−3 kg m−3. Contemporaneous estimates of vertical mixing by turbulent kinetic energy dissipation reveal rapid convection in these unstable density profiles, and mixing lifetimes from 2 to 12 minutes. The corresponding median rate of ice production is 26 cm day−1 and compares well with previous empirical and model estimates. Our individual estimates of ice production up to 378 cm day−1 reveal the intensity of short-term ice production events during the windiest episodes of our occupation of Terra Nova Bay Polynya. How to cite: De Pace, L., Smith, M., Thomson, J., Stammerjohn, S., Ackley, S., and Loose, B.: Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica, The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-213, in review, 2019.more » « less
-
null (Ed.)Abstract. Katabatic winds in coastal polynyas expose the ocean to extreme heat loss, causing intense sea ice production and dense water formation around Antarctica throughout autumn and winter. The advancing sea ice pack, combined with high winds and low temperatures, has limited surface oceanobservations of polynyas in winter, thereby impeding new insights into theevolution of these ice factories through the dark austral months. Here, wedescribe oceanic observations during multiple katabatic wind events duringMay 2017 in the Terra Nova Bay and Ross Sea polynyas. Wind speeds regularlyexceeded 20 m s−1, air temperatures were below −25 ∘C, and the oceanic mixed layer extended to 600 m. During these events, conductivity–temperature–depth (CTD)profiles revealed bulges of warm, salty water directly beneath the oceansurface and extending downwards tens of meters. These profiles reflect latent heat and salt release during unconsolidated frazil ice production, driven by atmospheric heat loss, a process that has rarely if ever been observed outside the laboratory. A simple salt budget suggests these anomalies reflect in situ frazil ice concentration that ranges from 13 to 266×10-3 kg m−3. Contemporaneous estimates of vertical mixing reveal rapid convection in these unstable density profiles and mixing lifetimes from 7 to 12 min. The individual estimates of ice production from the salt budget reveal the intensity of short-term ice production, up to 110 cm d−1 during the windiest events, and a seasonal average of 29 cm d−1. We further found that frazil ice production rates covary with wind speed and with location along the upstream–downstream length of the polynya. These measurements reveal that it is possible to indirectly observe and estimate the process of unconsolidated ice production in polynyas by measuring upper-ocean water column profiles. These vigorous ice production rates suggest frazil ice may be an important component in total polynya ice production.more » « less
An official website of the United States government
