Abstract Birational properties of generically finite morphisms of algebraic varieties can be understood locally by a valuation of the function field ofX. In finite extensions of algebraic local rings in characteristic zero algebraic function fields which are dominated by a valuation, there are nice monomial forms of the mapping after blowing up enough, which reflect classical invariants of the valuation. Further, these forms are stable upon suitable further blowing up. In positive characteristic algebraic function fields, it is not always possible to find a monomial form after blowing up along a valuation, even in dimension two. In dimension two and positive characteristic, after enough blowing up, there are stable forms of the mapping which hold upon suitable sequences of blowing up. We give examples showing that even within these stable forms, the forms can vary dramatically (erratically) upon further blowing up. We construct these examples in defect Artin–Schreier extensions which can have any prescribed distance.
more »
« less
This content will become publicly available on March 20, 2026
On the computation of Kähler differentials and characterizations of Galois extensions with independent defect
Abstract For important cases of algebraic extensions of valued fields, we develop presentations of the associated Kähler differentials of the extensions of their valuation rings. We compute their annihilators as well as the associated differents. We then apply the results to Galois defect extensions of prime degree. Defects can appear in finite extensions of valued fields of positive residue characteristic and are serious obstructions to several problems in positive characteristic. A classification of defects (dependent vs. independent) has been introduced by the second and the third author. It has been shown that perfectoid fields and deeply ramified fields only admit extensions with independent defect. We give several characterizations of independent defect, using ramification ideals, Kähler differentials, and traces of the maximal ideals of valuation rings. All of our results are for arbitrary valuations; in particular, we have no restrictions on their ranks or value groups.
more »
« less
- PAR ID:
- 10578588
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Mathematische Nachrichten
- ISSN:
- 0025-584X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We compute the 2‐adic effective slice spectral sequence (ESSS) for the motivic stable homotopy groups of , a motivic analogue of the connective ‐local sphere over prime fields of characteristic not two. Together with the analogous computation over algebraically closed fields, this yields information about the motivic ‐local sphere over arbitrary base fields of characteristic not two. To compute the spectral sequence, we prove several results that may be of independent interest. We describe the ‐differentials in the slice spectral sequence in terms of the motivic Steenrod operations over general base fields, building on analogous results of Ananyevskiy, Röndigs, and Østvær for the very effective cover of Hermitian K‐theory. We also explicitly describe the coefficients of certain motivic Eilenberg–MacLane spectra and compute the ESSS for the very effective cover of Hermitian K‐theory over prime fields.more » « less
-
abstract: We give a version of the usual Jacobian characterization of the defining ideal of the singular locus in the equal characteristic case: the new theorem is valid for essentially affine algebras over a complete local algebra over a mixed characteristic discrete valuation ring. The result makes use of the minors of a matrix that includes a row coming from the values of a $$p$$-derivation. To study the analogue of modules of differentials associated with the mixed Jacobian matrices that arise in our context, we introduce and investigate the notion of a {\it perivation}, which may be thought of, roughly, as a linearization of the notion of $$p$$-derivation. We also develop a mixed characteristic analogue of the positive characteristic $$\Gamma$$-construction, and apply this to give additional nonsingularity criteria.more » « less
-
Abstract The main goal of this paper is to study some properties of an extension of valuations from classical invariants. More specifically, we consider a valued field and an extension ω of ν to a finite extensionLofK. Then we study when the valuation ring of ω is essentially finitely generated over the valuation ring of ν. We present a necessary condition in terms of classic invariants of the extension by Hagen Knaf and show that in some particular cases, this condition is also sufficient. We also study when the corresponding extension of graded algebras is finitely generated. For this problem we present an equivalent condition (which is weaker than the one for the finite generation of the valuation rings).more » « less
An official website of the United States government
