skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Jacobian criterion for nonsingularity in mixed characteristic
abstract: We give a version of the usual Jacobian characterization of the defining ideal of the singular locus in the equal characteristic case: the new theorem is valid for essentially affine algebras over a complete local algebra over a mixed characteristic discrete valuation ring. The result makes use of the minors of a matrix that includes a row coming from the values of a $$p$$-derivation. To study the analogue of modules of differentials associated with the mixed Jacobian matrices that arise in our context, we introduce and investigate the notion of a {\it perivation}, which may be thought of, roughly, as a linearization of the notion of $$p$$-derivation. We also develop a mixed characteristic analogue of the positive characteristic $$\Gamma$$-construction, and apply this to give additional nonsingularity criteria.  more » « less
Award ID(s):
2044833
PAR ID:
10578097
Author(s) / Creator(s):
;
Publisher / Repository:
American Journal of Mathematics
Date Published:
Journal Name:
American Journal of Mathematics
Volume:
146
Issue:
6
ISSN:
1080-6377
Page Range / eLocation ID:
1749 to 1780
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We give new instances where Chabauty–Kim sets can be proved to be finite, by developing a notion of “generalised height functions” on Selmer varieties. We also explain how to compute these generalised heights in terms of iterated integrals and give the 1st explicit nonabelian Chabauty result for a curve $$X/\mathbb{Q}$$ whose Jacobian has Mordell–Weil rank larger than its genus. 
    more » « less
  2. Abstract We initiate the study of the resolution of singularities properties of Nash blowups over fields of prime characteristic. We prove that the iteration of normalized Nash blowups desingularizes normal toric surfaces. We also introduce a prime characteristic version of the logarithmic Jacobian ideal of a toric variety and prove that its blowup coincides with the Nash blowup of the variety. As a consequence, the Nash blowup of a, not necessarily normal, toric variety of arbitrary dimension in prime characteristic can be described combinatorially. 
    more » « less
  3. We use the framework of perfectoid big Cohen-Macaulay (BCM) algebras to define a class of singularities for pairs in mixed characteristic, which we call purely BCM-regular singularities, and a corresponding adjoint ideal. We prove that these satisfy adjunction and inversion of adjunction with respect to the notion of BCM-regularity and the BCM test ideal defined by the first two authors. We compare them with the existing equal characteristic purely log terminal (PLT) and purely F F -regular singularities and adjoint ideals. As an application, we obtain a uniform version of the Briançon-Skoda theorem in mixed characteristic. We also use our theory to prove that two-dimensional Kawamata log terminal singularities are BCM-regular if the residue characteristic p > 5 p>5 , which implies an inversion of adjunction for three-dimensional PLT pairs of residue characteristic p > 5 p>5 . In particular, divisorial centers of PLT pairs in dimension three are normal when p > 5 p > 5 . Furthermore, in Appendix A we provide a streamlined construction of perfectoid big Cohen-Macaulay algebras and show new functoriality properties for them using the perfectoidization functor of Bhatt and Scholze. 
    more » « less
  4. null (Ed.)
    Abstract We prove duality results for residual intersections that unify and complete results of van Straten,Huneke–Ulrich and Ulrich, and settle conjectures of van Straten and Warmt. Suppose that I is an ideal of codimension g in a Gorenstein ring,and {J\subset I} is an ideal with {s=g+t} generators such that {K:=J:I} has codimension s . Let {{\overline{I}}} be the image of I in {{\overline{R}}:=R/K} . In the first part of the paper we prove, among other things, that under suitable hypotheses on I , the truncated Rees ring {{\overline{R}}\oplus{\overline{I}}\oplus\cdots\oplus{\overline{I}}{}^{t+1}} is a Gorenstein ring, and that the modules {{\overline{I}}{}^{u}} and {{\overline{I}}{}^{t+1-u}} are dualto one another via the multiplication pairing into {{{\overline{I}}{}^{t+1}}\cong{\omega_{\overline{R}}}} . In the second part of the paper we study the analogue of residue theory, and prove that, when {R/K} is a finite-dimensional algebra over a field of characteristic 0 and certain other hypotheses are satisfied, the socle of {I^{t+1}/JI^{t}\cong{\omega_{R/K}}} is generated by a Jacobian determinant. 
    more » « less
  5. Abstract This article considers a long-outstanding open question regarding the Jacobian determinant for the relativistic Boltzmann equation in the center-of-momentum coordinates. For the Newtonian Boltzmann equation, the center-of-momentum coordinates have played a large role in the study of the Newtonian non-cutoff Boltzmann equation, in particular we mention the widely used cancellation lemma [1]. In this article we calculate specifically the very complicated Jacobian determinant, in ten variables, for the relativistic collision map from the momentum p to the post collisional momentum $$p'$$ p ′ ; specifically we calculate the determinant for $$p\mapsto u = \theta p'+\left( 1-\theta \right) p$$ p ↦ u = θ p ′ + 1 - θ p for $$\theta \in [0,1]$$ θ ∈ [ 0 , 1 ] . Afterwards we give an upper-bound for this determinant that has no singularity in both p and q variables. Next we give an example where we prove that the Jacobian goes to zero in a specific pointwise limit. We further explain the results of our numerical study which shows that the Jacobian determinant has a very large number of distinct points at which it is machine zero. This generalizes the work of Glassey-Strauss (1991) [8] and Guo-Strain (2012) [12]. These conclusions make it difficult to envision a direct relativistic analog of the Newtonian cancellation lemma in the center-of-momentum coordinates. 
    more » « less