We report liquid-phase exfoliation (LPE) of bulk layered-structure semiconductor, MnIn 2 Se 4 , to nanoscale thick sheets by ultrasonication followed by sequential centrifugation at 2000, 5000, and 7500 rpm. The nanosheets exfoliated by LPE in isopropyl alcohol show an average thickness of 50, 40, and 14 nm, respectively. The smallest of these values corresponds approximately to ten 7-atom thick [Se–In–Se–Mn–Se–In–Se] layers that compose the bulk structure of MnIn 2 Se 4 . Both the bulk material and the exfoliated samples show photoluminescence, but the weak shoulder observed from the indirect band gap emission is obviously suppressed in the nanosheet samples as compared to the bulk sample. Similar to the bulk, the nanosheets isolated at 2000 and 5000 rpm exhibit spin-glass behavior with a freezing temperature of ∼3 K. In contrast, the nanosheets isolated at 7500 rpm do not exhibit any anomalies in their low-temperature magnetic behavior. These results demonstrate the possibility to extend the LPE technique to van-der-Waals materials with several-atom-thick layers.
more »
« less
This content will become publicly available on September 18, 2025
Opening the Hysteresis Loop in Ferromagnetic Fe 3 GeTe 2 Nanosheets Through Functionalization with TCNQ Molecules
Abstract Ferromagnetic metal Fe3GeTe2(FGT), whose structure exhibits weak van‐der‐Waals interactions between 5‐atom thick layers, was subjected to liquid‐phase exfoliation (LPE) in N‐methyl pyrrolidone (NMP) to yield a suspension of nanosheets that were separated into several fractions by successive centrifugation at different speeds. Electron microscopy confirmed successful exfoliation of bulk FGT to nanosheets as thin as 6 nm. The ferromagnetic ordering temperature for the nanosheets gradually decreased with the increase in the centrifugation speed used to isolate the 2D material. These nanosheets were resuspended in NMP and treated with an organic acceptor, 7,7,8,8‐tetracyano‐quinodimethane (TCNQ), which led to precipitation of FGT‐TCNQ composite. The formation of the composite material is accompanied by charge transfer from the FGT nanosheets to TCNQ molecules, generating TCNQ⋅−radical anions, as revealed by experimental vibrational spectra and supported by first principles calculations. Remarkably, a substantial increase in magnetic anisotropy was observed, as manifested by the increase in the coercive field from nearly zero in bulk FGT to 1.0 kOe in the exfoliated nanosheets and then to 5.4 kOe in the FGT‐TCNQ composite. The dramatic increase in coercivity of the composite suggests that functionalization with redox‐active molecules provides an appealing pathway to enhancing magnetic properties of 2D materials.
more »
« less
- Award ID(s):
- 2233902
- PAR ID:
- 10578676
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 64
- Issue:
- 5
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Co‐crystallization of the spin‐crossover (SCO) cationic complex, [Fe(1‐bpp)2]2+(1‐bpp=2,6‐bis(pyrazol‐1‐yl)pyridine) with fractionally charged organic anion TCNQδ−(0<δ<1) afforded hybrid materials [Fe(1‐bpp)2](TCNQ)3.5 ⋅ 3.5MeCN (1) and [Fe(1‐bpp)2](TCNQ)4 ⋅ 4DCE (2), where TCNQ=7,7,8,8‐tetracyanoquinodimethane, MeCN=acetonitrile, and DCE=1,2‐dichloroethane. Both materials exhibit semiconducting behavior, with the room‐temperature conductivity values of 1.1×10−4 S/cm and 1.7×10−3 S/cm, respectively. The magnetic behavior of both complexes exhibits strong dependence on the content of the interstitial solvent. Complex1undergoes a gradual temperature‐driven SCO, with the midpoint temperature ofT1/2=234 K. The partial solvent loss by1leads to the increase in theT1/2value while complete desolvation renders the material high‐spin (HS) in the entire studied temperature range. In the case of2, the solvated complex shows a gradual SCO withT1/2=166 K only when covered with a mother liquid, while the facile loss of interstitial solvent, even at room temperature, leads to the HS‐only behavior.more » « less
-
Abstract Printed 2D materials, derived from solution‐processed inks, offer scalable and cost‐effective routes to mechanically flexible optoelectronics. With micrometer‐scale control and broad processing latitude, aerosol‐jet printing (AJP) is of particular interest for all‐printed circuits and systems. Here, AJP is utilized to achieve ultrahigh‐responsivity photodetectors consisting of well‐aligned, percolating networks of semiconducting MoS2nanosheets and graphene electrodes on flexible polyimide substrates. Ultrathin (≈1.2 nm thick) and high‐aspect‐ratio (≈1 μm lateral size) MoS2nanosheets are obtained by electrochemical intercalation followed by megasonic atomization during AJP, which not only aerosolizes the inks but also further exfoliates the nanosheets. The incorporation of the high‐boiling‐point solvent terpineol into the MoS2ink is critical for achieving a highly aligned and flat thin‐film morphology following AJP as confirmed by grazing‐incidence wide‐angle X‐ray scattering and atomic force microscopy. Following AJP, curing is achieved with photonic annealing, which yields quasi‐ohmic contacts and photoactive channels with responsivities exceeding 103 A W−1that outperform previously reported all‐printed visible‐light photodetectors by over three orders of magnitude. Megasonic exfoliation coupled with properly designed AJP ink formulations enables the superlative optoelectronic properties of ultrathin MoS2nanosheets to be preserved and exploited for the scalable additive manufacturing of mechanically flexible optoelectronics.more » « less
-
The sawtooth chain compound CsCo 2 (MoO 4 ) 2 (OH) is a complex magnetic system and here, we present a comprehensive series of magnetic and neutron scattering measurements to determine its magnetic phase diagram. The magnetic properties of CsCo 2 (MoO 4 ) 2 (OH) exhibit a strong coupling to the crystal lattice and its magnetic ground state can be easily manipulated by applied magnetic fields. There are two unique Co 2+ ions, base and vertex, with J bb and J bv magnetic exchange. The magnetism is highly anisotropic with the b -axis (chain) along the easy axis and the material orders antiferromagnetically at T N = 5 K. There are two successive metamagnetic transitions, the first at H c 1 = 0.2 kOe into a ferrimagnetic structure, and the other at H c 2 = 20 kOe to a ferromagnetic phase. Heat capacity measurements in various fields support the metamagnetic phase transformations, and the magnetic entropy value is intermediate between S = 3/2 and 1/2 states. The zero field antiferromagnetic phase contains vertex magnetic vectors (Co(1)) aligned parallel to the b -axis, while the base vectors (Co(2)) are canted by 34° and aligned in an opposite direction to the vertex vectors. The spins in parallel adjacent chains align in opposite directions, creating an overall antiferromagnetic structure. At a 3 kOe applied magnetic field, adjacent chains flip by 180° to generate a ferrimagnetic phase. An increase in field gradually induces the Co(1) moment to rotate along the b -axis and align in the same direction with Co(2) generating a ferromagnetic structure. The antiferromagnetic exchange parameters are calculated to be J bb = 0.028 meV and J bv = 0.13 meV, while the interchain exchange parameter is considerably weaker at J ch = (0.0047/ N ch ) meV. Our results demonstrate that the CsCo 2 (MoO 4 ) 2 (OH) is a promising candidate to study new physics associated with sawtooth chain magnetism and it encourages further theoretical studies as well as the synthesis of other sawtooth chain structures with different magnetic ions.more » « less
-
Abstract Antiferromagnetic van der Waals‐typeM2P2X6compounds provide a versatile material platform for studying 2D magnetism and relevant phenomena. Establishing ferromagnetism in 2D materials is technologically valuable. Though magnetism is generally tunable via a chemical way, it is challenging to induce ferromagnetism with isovalent chalcogen and bimetallic substitutions inM2P2X6. Here, we report co‐substitution of Cu1+and Cr3+for Ni2+in Ni2P2S6, creating CuxNi2(1‐x)CrxP2S6medium‐entropy alloys spanning a full substitution range (x= 0 to 1). Such substitution strategy leads to a unique evolution in crystal structure and magnetic phases that are distinct from traditional isovalent bimetallic doping, with Cu and Cr co‐substitution enhancing ferromagnetic correlations and generating a weak ferromagnetic phase in intermediate compositions. This aliovalent substitution strategy offers a universal approach for tuning layered magnetism in antiferromagnetic systems, which along with the potential for light‐matter interaction and high‐temperature ferroelectricity, can enable multifunctional device applications.more » « less